Impact of the Atmospheric Mean State on Tropical Instability Wave Activity

Yukiko Imada Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Search for other papers by Yukiko Imada in
Current site
Google Scholar
PubMed
Close
,
Masahide Kimoto Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Search for other papers by Masahide Kimoto in
Current site
Google Scholar
PubMed
Close
, and
Xianyan Chen National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Xianyan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The features of simulated tropical instability waves (TIWs) in the Pacific Ocean are compared between atmospheric models of two different resolutions coupled with a uniform oceanic model. Results show that TIWs are more active in the high-resolution model, even though it includes atmospheric negative feedback. Such negative feedback is not identified in the low-resolution atmospheric model because of the absence of atmospheric responses. Comparison of the energetics between the two models shows that the large TIW activity in the higher-resolution model is due to the difference in barotropic energy sources near the surface. A high-resolution atmosphere results in a tighter intertropical convergence zone and associated stronger wind curl and shear. This causes a stronger surface current shear between the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), which is one of the main sources of TIW kinetic energy. These results indicate the important role of the atmospheric mean field on TIW activity and the advantage of using high-resolution models to represent coupling among multiscale phenomena.

Current affiliation: Tokyo Institute of Technology, Tokyo, Japan.

Corresponding author address: Yukiko Imada, Tokyo Institute of Technology, 1-12-1, O-okayama, Meguro, Tokyo, 152-8552, Japan. E-mail: imada.y.aa@m.titech.ac.jp

Abstract

The features of simulated tropical instability waves (TIWs) in the Pacific Ocean are compared between atmospheric models of two different resolutions coupled with a uniform oceanic model. Results show that TIWs are more active in the high-resolution model, even though it includes atmospheric negative feedback. Such negative feedback is not identified in the low-resolution atmospheric model because of the absence of atmospheric responses. Comparison of the energetics between the two models shows that the large TIW activity in the higher-resolution model is due to the difference in barotropic energy sources near the surface. A high-resolution atmosphere results in a tighter intertropical convergence zone and associated stronger wind curl and shear. This causes a stronger surface current shear between the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), which is one of the main sources of TIW kinetic energy. These results indicate the important role of the atmospheric mean field on TIW activity and the advantage of using high-resolution models to represent coupling among multiscale phenomena.

Current affiliation: Tokyo Institute of Technology, Tokyo, Japan.

Corresponding author address: Yukiko Imada, Tokyo Institute of Technology, 1-12-1, O-okayama, Meguro, Tokyo, 152-8552, Japan. E-mail: imada.y.aa@m.titech.ac.jp
Save
  • An, S.-I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686.

  • Arakawa, A., and W. H. Schubert, 1974: Interactions of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 671701.

    • Search Google Scholar
    • Export Citation
  • Baturin, N. G., and P. P. Niiler, 1997: Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 102, 27 77127 794.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effect on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47, 5579.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schilax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 12391242.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite mesurements reveal persistent small-scale features in ocean winds. Science, 303, 978983.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and M. Kimoto, 2009: Simulating tropical instability waves in the equatorial eastern Pacific with a coupled general circulation model. Adv. Atmos. Sci., 26, 10151026.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. F., 2002: Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32, 27152722.

  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10, 11681186.

  • Cox, M. D., 1987: Isopycnal diffusion in a z-coordinate ocean model. Ocean Modell., 74, 15.

  • Düeing, W., and Coauthors, 1975: Meanders and long waves in the equatorial Atlantic. Nature, 257, 280284.

  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79, 939947.

    • Search Google Scholar
    • Export Citation
  • Flament, P., S. Kennan, R. Knox, P. Niiler, and R. Bernstein, 1996: The three-dimensional structure of an upper ocean vortex in the tropical Pacific. Nature, 383, 610613.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., J. A. Carton, and E. P. Chassignet, 2004: Tropical instability vortices in the Atlantic Ocean. J. Geophys. Res., 109, C03029, doi:10.1029/2003JC001942.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Halpern, D., D. R. A. Knox, and D. S. Luther, 1988: Observations of 20-day period meridional current oscillations in the upper ocean along the Pacific equator. J. Phys. Oceanogr., 18, 15141534.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89, 10 43110 440.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S.-P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local and remote response to tropical instability waves: A global view from space. J. Geophys. Res., 106, 10 17310 185.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 2006: CCSR ocean component model (COCO) version 2.1. CCSR Rep. 13, 68 pp.

  • Hasumi, H., and S. Emori, Eds., 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, Kashiwa, Japan, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific. J. Climate, 2, 15001506.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605.

  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 11771181.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1994: The flux-integral method for multi-dimensional convection and diffusion. NASA Tech. Memo. 106679, ICOMP-94-13, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and Z.-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5, 175187.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the roles of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability waves observed by QuikSCAT and tropical rain measuring mission. Geophys. Res. Lett., 27, 25452548.

    • Search Google Scholar
    • Export Citation
  • Masina, S., and S. G. H. Philander, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean 1. Spatial variability of the waves. J. Geophys. Res., 104, 29 61329 635.

    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean 2. Generation and energetics of the waves. J. Geophys. Res., 104, 29 63729 661.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and Z. Yu, 1992: Equatorial dynamics in a 2 1/2-layer model. Prog. Oceanogr., 29, 152176.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modelling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 48694878.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H.-J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES Atmospheric General Circulation Model. CCSR Supercomputer Monogr. Rep., No. 3, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Pezzi, L. P., J. Vialard, K. J. Richard, C. Menkes, and D. Anderson, 2004: Influence of ocean-atmosphere coupling on the properties of tropical instability waves. J. Geophys. Res., 31, L16306, doi:10.1029/2004GL019995.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1976: Instabilities of zonal currents, 1. J. Geophys. Res., 81, 37253735.

  • Philander, S. G. H., 1978: Instabilities of zonal currents, 2. J. Geophys. Res., 83, 36793682.

  • Proehl, H., 1996: Linear instability of equatorial zonal flows. J. Phys. Oceanogr., 26, 601621.

  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the tropical instability wave experiment. J. Geophys. Res., 100, 86778693.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1998: Tropical instability wave energetics: Observations from the tropical instability wave experiment. J. Phys. Oceanogr., 28, 345360.

    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, J. O. Roads, 2007a: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007b: The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16, 37233741.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Ocean, 45, 274319.

  • Small, R. J., K. J. Richards, S.-P. Xie, P. Dutrieux, and T. Miyama, 2009: Damping of tropical instability waves caused by the action of surface currents on stress. J. Geophys. Res., 114, C04009, doi:10.1029/2008JC005147.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Effect of sea surface temperature–wind stress coupling on baroclinic instability in the ocean. J. Phys. Oceanogr., 37, 10921097.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean: With application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and D. V. Hansen, 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29, 6981.

    • Search Google Scholar
    • Export Citation
  • Thum, N., S. K. Esbensen, D. B. Chelton, and M. J. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., 1984: Instability waves observed on the equator in the Atlantic Ocean during 1983. Geophys. Res. Lett., 11, 753756.

  • Weisberg, R. H., and T. J. Weingartner, 1988: Instability waves in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 18, 16411657.

  • Wilson, D., and A. Leetmaa, 1988: Acoustic Doppler current profiling in the equatorial Pacific in 1984. J. Geophys. Res., 93, 13 94713 966.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208.

  • Xie, S.-P., M. Ishiwatari, H. Hashizume, and K. Takeuchi, 1998: Coupled ocean-atmospheric waves on the equatorial front. Geophys. Res. Lett., 25, 38633866.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and W. T. Liu, 2003: A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean. Geophys. Res. Lett., 30, 1735, doi:10.1029/2003GL017176.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., J. P. McCreary Jr., and J. A. Proehl, 1995: Meridional asymmetry and energetics of tropical instability waves. J. Phys. Oceanogr., 25, 29973007.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. J. McPhaden, 1995: The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8, 589605.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 75 13
PDF Downloads 100 52 7