Creation of a Heat and Salt Flux Dataset Associated with Sea Ice Production and Melting in the Sea of Okhotsk

Sohey Nihashi Department of Mechanical Engineering, Tomakomai National College of Technology, Tomakomai, Japan

Search for other papers by Sohey Nihashi in
Current site
Google Scholar
PubMed
Close
,
Kay I. Ohshima Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Search for other papers by Kay I. Ohshima in
Current site
Google Scholar
PubMed
Close
, and
Noriaki Kimura Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

Search for other papers by Noriaki Kimura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.

Corresponding author address: Sohey Nihashi, Department of Mechanical Engineering, Tomakomai National College of Technology, 443 Nishikioka, Tomakomai 059-1275, Japan. E-mail: sohey@me.tomakomai-ct.ac.jp

This article is included in the CLIVAR/SeaFlux special collection.

Abstract

Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.

Corresponding author address: Sohey Nihashi, Department of Mechanical Engineering, Tomakomai National College of Technology, 443 Nishikioka, Tomakomai 059-1275, Japan. E-mail: sohey@me.tomakomai-ct.ac.jp

This article is included in the CLIVAR/SeaFlux special collection.

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Alexander, V., and H. J. Niebauer, 1981: Oceanography of the eastern Bering Sea ice-edge zone in spring. Limnol. Oceanogr., 26, 11111125.

    • Search Google Scholar
    • Export Citation
  • Allison, I., R. E. Brandt, and S. Warren, 1993: East Antarctic sea ice: Albedo, thickness distribution, and snow cover. J. Geophys. Res., 98, 12 41712 429.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and S. Martin, 1994: The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J. Geophys. Res., 99, 18 34318 362.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., T. Markus, D. K. Hall, A. J. Gasiewski, M. Klein, and A. Ivanoff, 2006: Assessment of EOS Aqua AMSR-E Arctic sea ice concentrations using Landsat-7 and airborne microwave imagery. IEEE Trans. Geosci. Remote Sens., 44, 30573069.

    • Search Google Scholar
    • Export Citation
  • Feldman, G. C., and C. R. McClain, cited 2010: Ocean color web. [Available online at http://oceancolor.gsfc.nasa.gov/.]

  • Fukamachi, Y., G. Mizuta, K. I. Ohshima, T. Toyota, N. Kimura, and M. Wakatsuchi, 2006: Sea ice thickness in the southwestern Sea of Okhotsk revealed by a moored ice-profiling sonar. J. Geophys. Res., 111, C09018, doi:10.1029/2005JC003327.

    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., and Coauthors, 2009: Direct observations of sea-ice thickness and brine rejection off Sakhalin in the Sea of Okhotsk. Cont. Shelf Res., 29, 15411548.

    • Search Google Scholar
    • Export Citation
  • Gradinger, R. R., and M. E. M. Banmann, 1991: Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. Mar. Biol., 111, 311321.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., and G. A. Maykut, 1977: The optical properties of ice and snow in the Arctic Basin. J. Glaciol., 18, 445463.

  • Hasumi, H., and N. Suginohara, 1995: Haline circulation induced by formation and melting of sea ice. J. Geophys. Res., 100, 20 61320 625.

    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358.

    • Search Google Scholar
    • Export Citation
  • Hoppema, M., and L. G. Anderson, 2007: Biogeochemistry of polynyas and their role in sequestration of anthropogenic constituents. Polynyas: Windows to the World’s Oceans, W. O. Smith Jr. and D. G. Barber, Eds., Elsevier, 193–221.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, T. Enomoto, and T. Kikuchi, 2011: Intercomparison of surface heat transfer near the Arctic marginal ice zone for multiple reanalyses: A case study of September 2009. SOLA, 7, 5760.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kimura, N., and M. Wakatsuchi, 1999: Processes controlling the advance and retreat of sea ice in the Sea of Okhotsk. J. Geophys. Res., 104, 11 13711 150.

    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2000: Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere. Geophys. Res. Lett., 27, 37353738.

    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2004: Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamical thickening in convergence zones. J. Geophys. Res., 109, C09S03, doi:10.1029/2003JC001901.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., A. Schweiger, D. A. Rothrock, S. Pang, and C. Kottmeier, 1998: Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res., 103, 81918214.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and D. J. Cavalieri, 1998: Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. Antarctic Sea Ice: Physical Processes, Interactions, and Variability, M. O. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 19–39.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and D. J. Cavalieri, 2000: An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38, 13871398.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and S. T. Dokken, 2002: Evaluation of late summer passive microwave Arctic sea ice retrievals. IEEE Trans. Geosci. Remote Sens., 40, 348356.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., and J.-O. Wolff, 2001: On the sensitivity of Southern Ocean sea ice to the surface freshwater flux: A model study. J. Geophys. Res., 106, 27232741.

    • Search Google Scholar
    • Export Citation
  • Martin, S., R. Drucker, and K. Yamashita, 1998: The production of ice and dense shelf water in the Okhotsk Sea polynyas. J. Geophys. Res., 103, 27 77127 782.

    • Search Google Scholar
    • Export Citation
  • Martin, T., and E. Augstein, 2000: Large-scale drift of Arctic sea ice retrieved from passive microwave satellite data. J. Geophys. Res., 105, 87758788.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1986: The surface heat and mass budget. The Geophysics of Sea Ice, N. Untersteiner, Ed., Plenum, 395–463.

  • Mellor, M., 1977: Engineering properties of snow. J. Glaciol., 19, 1566.

  • Miller, L. A., and G. R. DiTullio, 2007: Gas fluxes and dynamics in polynyas. Polynyas: Windows to the World’s Oceans, W. O. Smith Jr., and D. G. Barber, Eds., Elsevier, 163–191.

    • Search Google Scholar
    • Export Citation
  • Morales Maqueda, M. A., A. J. Willmott, and N. R. T. Biggs, 2004: Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116.

    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. I. Ohshima, and M. Wakatsuchi, 2007: Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1995–2004. Geophys. Res. Lett., 34, L04602, doi:10.1029/2006GL028243.

    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. I. Ohshima, and S. Nagai, 2010: What determines the maximum sea ice extent in the Sea of Okhotsk? Importance of ocean thermal condition from the Pacific. J. Geophys. Res., 115, C12031, doi:10.1029/2009JC006070.

    • Search Google Scholar
    • Export Citation
  • Nakatsuka, T., T. Fujimune, C. Yoshikawa, S. Noriki, K. Kawamura, Y. Fukamachi, G. Mizuta, and M. Wakatsuchi, 2004: Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: Implications for lateral material transport and biological productivity. J. Geophys. Res., 109, C09S13, doi:10.1029/2009JC006070.

    • Search Google Scholar
    • Export Citation
  • Nihashi, S., K. I. Ohshima, M. O. Jeffries, and T. Kawamura, 2005: Sea-ice melting processes inferred from ice–upper ocean relationships in the Ross Sea, Antarctica. J. Geophys. Res., 110, C02002, doi:10.1029/2003JC002235.

    • Search Google Scholar
    • Export Citation
  • Nihashi, S., K. I. Ohshima, T. Tamura, Y. Fukamachi, and S.-I. Saitoh, 2009: Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. J. Geophys. Res., 114, C10025, doi:10.1029/2008JC005222.

    • Search Google Scholar
    • Export Citation
  • Nihashi, S., K. I. Ohshima, and H. Nakasato, 2011: Sea-ice retreat in the Sea of Okhotsk and the ice–ocean albedo feedback effect on it. J. Oceanogr., 67, 551562, doi:10.1007/s10872-011-0056-x.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., Y. Tachibana, F. Nishio, and M. A. Danchenkov, 2001: Does the fresh water supply from the Amur River flowing into the Sea of Okhotsk affect sea ice formation? J. Meteor. Soc. Japan, 79, 123129.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., K. Yoshida, H. Shimoda, M. Wakatsuchi, T. Endoh, and M. Fukuchi, 1998: Relationship between the upper ocean and sea ice during the Antarctic melting season. J. Geophys. Res., 103, 76017615.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., T. Watanabe, and S. Nihashi, 2003: Surface heat budget of the Sea of Okhotsk during 1987–2001 and the role of sea ice on it. J. Meteor. Soc. Japan, 81, 653677.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., S. Nihashi, E. Hashiya, and T. Watanabe, 2006: Interannual variability of sea ice area in the Sea of Okhotsk: Importance of surface heat flux in fall. J. Meteor. Soc. Japan, 84, 907919.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., T. Nakanowatari, S. Riser, and M. Wakatsuchi, 2010: Seasonal variation in the in- and outflow of the Okhotsk Sea with the North Pacific. Deep-Sea Res. II, 57, 12471256.

    • Search Google Scholar
    • Export Citation
  • Ono, J., K. I. Ohshima, G. Mizuta, Y. Fukamachi, and M. Wakatsuchi, 2006: Amplification of diurnal tides over Kashevarov Bank in the Sea of Okhotsk and its impact on water mixing and sea ice. Deep-Sea Res., 53, 409424.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and T. C. Grenfell, 1981: Laboratory studies of the optical properties of young ice. J. Glaciol., 27, 331346.

  • Petrov, A. G., 1998: Sea ice condition. Hydrometeorology and Chemistry of Sea (in Russian), B. H. Gluhovsky, N. P. Gontareva, and F. S. Terziev, Eds., Vol. 9, Okhotsk Sea, Gidrometeoizdat, 291–340.

    • Search Google Scholar
    • Export Citation
  • Poli, P., 2010: List of observations assimilated in ERA-40 and ERA-Interim (v1.0). ECMWF ERA Rep. Series 4, 25 pp.

  • Polyakov, I., and S. Martin, 2000: Interaction of the Okhotsk Sea diurnal tides with the Kashevarov Bank polynya. J. Geophys. Res., 105, 32813294.

    • Search Google Scholar
    • Export Citation
  • Röske, F., 2006: A global heat and freshwater forcing dataset for ocean models. Ocean Modell., 11, 235297.

  • Shcherbina, A. Y., L. D. Talley, and D. L. Rudnick, 2003: Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea. Science, 302, 19521955.

    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and D. M. Nelson, 1985: Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science, 227, 163166.

    • Search Google Scholar
    • Export Citation
  • Smith, W. O., Jr., and J. C. Comiso, 2008: Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J. Geophys. Res., 113, C05S93, doi:10.1029/2007JC004251.

    • Search Google Scholar
    • Export Citation
  • Sullivan, C. W., K. R. Arrigo, C. R. McClain, J. C. Comiso, and J. Firestone, 1993: Distributions of phytoplankton blooms in the Southern Ocean. Science, 262, 18321837.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, S. Nihashi, and H. Hasumi, 2011: Estimation of surface heat/salt fluxes associated with sea ice growth/melt in the Southern Ocean. SOLA, 7, 1720, doi:10.2151/sola.2011-005.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852.

  • Toyota, T., J. Ukita, K. I. Ohshima, M. Wakatsuchi, and K. Muramoto, 1999: A measurement of sea ice albedo over the southwestern Okhotsk Sea. J. Meteor. Soc. Japan, 77, 117133.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., T. Kawamura, and M. Wakatsuchi, 2000: Heat budget in the ice cover of the southern Okhotsk Sea derived from in-situ observations. J. Meteor. Soc. Japan, 78, 585596.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., K. Baba, E. Hashiya, and K. I. Ohshima, 2002: In-situ ice and meteorological observations in the southern Sea of Okhotsk in 2001 winter: Ice structure, snow on ice, surface temperature, and optical environments. Polar Meteor. Glaciol., 16, 116132.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., S. Takatsuji, K. Tateyama, K. Naoki, and K. I. Ohshima, 2007: Properties of sea ice and overlying snow in the southern Sea of Okhotsk. J. Oceanogr., 63, 393411.

    • Search Google Scholar
    • Export Citation
  • Tremblay, J.-E., and W. O. Smith Jr., 2007: Phytoplankton processes in polynyas. Polynyas: Windows to the World’s Oceans, W. O. Smith Jr., and D. G. Barber, Eds., Elsevier, 239–269.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Watanabe, T., M. Ikeda, and M. Wakatsuchi, 2004: Thermohaline effects of the seasonal sea ice cover in the Sea of Okhotsk. J. Geophys. Res., 109, C09S02, doi:10.1029/2003JC001905.

    • Search Google Scholar
    • Export Citation
  • Worby, A. P., and I. Allison, 1999: Part I: Observational technique and results. A technique for making ship-based observations of Antarctic sea ice thickness and characteristics. Antarctic Cooperative Research Center Research Rep. 14, 1–23 pp.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Zakharkov, S. P., M. S. Selina, N. S. Vanin, E. A. Shtraikhert, and N. Biebov, 2007: Phytoplankton characteristics and hydrological conditions in the western part of the Sea of Okhotsk in the spring of 1999 and 2000 based on expeditionary and satellite data. Mar. Biol., 47, 559570.

    • Search Google Scholar
    • Export Citation
  • Zenkin, O. V., A. V. Leonov, V. M. Pishchalnik, and S. A. Pokrashenko, 2009: The use of satellite data to characterize phytoplankton in Sea of Okhotsk water. Water Resour., 36, 466477.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 694 311 34
PDF Downloads 252 88 17