On the Sensitivity of the Drake Passage Transport to Air–Sea Momentum Flux

Matthew R. Mazloff Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An eddy-permitting state estimate and its adjoint are used to analyze the influence of wind stress perturbations on the transport of the Antarctic Circumpolar Current (ACC) system through Drake Passage. The transport is found to be sensitive to wind stress perturbations both along the ACC path and also in remote regions. The time scale of influence of wind stress perturbations is on the order of 100 days. Regarding spatial scales, the sensitivity of transport to wind stress is relatively smooth in regions of flat topography. In boundary regions and regions with complex topography, however, the sensitivity is enhanced and characterized by shorter length scales of order 100 km. Positive perturbations to the zonal wind stress usually increase the ACC transport, though the wind stress curl is of primary influence where the currents are steered by topography. Highlighting locations where the ACC is especially responsive to air–sea momentum fluxes reveals where an accurate determination of atmospheric winds may best enhance ocean modeling efforts.

Corresponding author address: Matthew Mazloff, Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: mmazloff@ucsd.edu

This article is included in the CLIVAR/SeaFlux special collection.

Abstract

An eddy-permitting state estimate and its adjoint are used to analyze the influence of wind stress perturbations on the transport of the Antarctic Circumpolar Current (ACC) system through Drake Passage. The transport is found to be sensitive to wind stress perturbations both along the ACC path and also in remote regions. The time scale of influence of wind stress perturbations is on the order of 100 days. Regarding spatial scales, the sensitivity of transport to wind stress is relatively smooth in regions of flat topography. In boundary regions and regions with complex topography, however, the sensitivity is enhanced and characterized by shorter length scales of order 100 km. Positive perturbations to the zonal wind stress usually increase the ACC transport, though the wind stress curl is of primary influence where the currents are steered by topography. Highlighting locations where the ACC is especially responsive to air–sea momentum fluxes reveals where an accurate determination of atmospheric winds may best enhance ocean modeling efforts.

Corresponding author address: Matthew Mazloff, Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: mmazloff@ucsd.edu

This article is included in the CLIVAR/SeaFlux special collection.

Save
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. G. Baines, 1996: Interactions between thermohaline- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current, in a coarse-resolution global ocean general circulation model. J. Geophys. Res., 101 (C6), 14 07314 093.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221.

  • Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., O. A. Saenko, K. Zickfeld, M. Eby, and A. J. Weaver, 2007: The role of poleward-intensifying winds on Southern Ocean warming. J. Climate, 20, 53915400.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced transport in ocean circulation models. J. Phys. Oceanogr., 25, 463474.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106 (C2), 26932712.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474.

  • Gill, A., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488.

  • Gille, S. T., 2003: Float observations of the Southern Ocean. Part I: Estimating mean fields, bottom velocities, and topographic steering. J. Phys. Oceanogr., 33, 11671181.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. W. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., D. Menemenlis, M. Losch, J.-M. Campin, and C. Hill, 2010: On the formulation of sea ice models. Part 2: Lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modell., 33 (1–2), 145158.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1980: Modeling a variable thickness ice cover. Mon. Wea. Rev., 108, 19431973.

  • Hogg, A., M. Meredith, J. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., M. P. Meredith, and K. J. Heywood, 1999: Wind-driven transport fluctuations through Drake Passage: A southern mode. J. Phys. Oceanogr., 29, 19711992.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447.

    • Search Google Scholar
    • Export Citation
  • Losch, M., and P. Heimbach, 2007: Adjoint sensitivity of an ocean general circulation model to bottom topography. J. Phys. Oceanogr., 37, 377393.

    • Search Google Scholar
    • Export Citation
  • Losch, M., D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33 (1–2), 129144.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1995: Topographic steering of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 25, 16361650.

  • Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899.

  • Meredith, M. P., and C. W. Hughes, 2004: On the wind-forcing of bottom pressure variability at Amsterdam and Kerguelen Islands, southern Indian Ocean. J. Geophys. Res., 109, C03012, doi:10.1029/2003JC002060.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., P. L. Woodworth, C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31, L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • NOAA, 1988: Data announcement 88-mgg-02: Digital relief of the surface of the earth. National Geophysical Data Center, digital media. [Available online at http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML.]

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2003: A simplified general circulation model for a baroclinic ocean with topography. Part I: Theory, waves, and wind-driven circulations. J. Phys. Oceanogr., 33, 27192737.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rintoul, S. R., C. W. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1997: Global sea floor topography from satellite altimetry and sparse shipboard bathymetry. Science, 277, 19561961.

    • Search Google Scholar
    • Export Citation
  • Tréguier, A. M., J. Le Sommer, J. M. Molines, and B. de Cuevas, 2010: Response of the Southern Ocean to the Southern Annular Mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of form drag in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 22972301.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and S. T. Gille, 2005: Adjustment of the Southern Ocean to wind forcing on synoptic time scales. J. Phys. Oceanogr., 35, 20762089.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340.

  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 384 pp.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 539 279 20
PDF Downloads 128 49 9