True to Milankovitch: Glacial Inception in the New Community Climate System Model

Markus Jochum National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Markus Jochum in
Current site
Google Scholar
PubMed
Close
,
Alexandra Jahn National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Alexandra Jahn in
Current site
Google Scholar
PubMed
Close
,
Synte Peacock National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Synte Peacock in
Current site
Google Scholar
PubMed
Close
,
David A. Bailey National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David A. Bailey in
Current site
Google Scholar
PubMed
Close
,
John T. Fasullo National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John T. Fasullo in
Current site
Google Scholar
PubMed
Close
,
Jennifer Kay National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jennifer Kay in
Current site
Google Scholar
PubMed
Close
,
Samuel Levis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Samuel Levis in
Current site
Google Scholar
PubMed
Close
, and
Bette Otto-Bliesner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Bette Otto-Bliesner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The equilibrium solution of a fully coupled general circulation model with present-day orbital forcing is compared to the solution of the same model with the orbital forcing from 115 000 years ago. The difference in snow accumulation between these two simulations has a pattern and a magnitude comparable to the ones inferred from reconstructions for the last glacial inception. This is a major improvement over previous similar studies, and the increased realism is attributed to the higher spatial resolution in the atmospheric model, which allows for a more accurate representation of the orography of northern Canada and Siberia. The analysis of the atmospheric heat budget reveals that, as postulated by Milankovitch’s hypothesis, the only necessary positive feedback is the snow–albedo feedback, which is initiated by reduced melting of snow and sea ice in the summer. However, this positive feedback is almost fully compensated by an increased meridional heat transport in the atmosphere and a reduced concentration of low Arctic clouds. In contrast to similar previous studies, the ocean heat transport remains largely unchanged. This stability of the northern North Atlantic circulation is explained by the regulating effect of the freshwater import through the Nares Strait and Northwest Passage and the spiciness import by the North Atlantic Current.

Corresponding author address: Markus Jochum, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: markus@ucar.edu

This article is included in the CESM1 Special Collection special collection.

Abstract

The equilibrium solution of a fully coupled general circulation model with present-day orbital forcing is compared to the solution of the same model with the orbital forcing from 115 000 years ago. The difference in snow accumulation between these two simulations has a pattern and a magnitude comparable to the ones inferred from reconstructions for the last glacial inception. This is a major improvement over previous similar studies, and the increased realism is attributed to the higher spatial resolution in the atmospheric model, which allows for a more accurate representation of the orography of northern Canada and Siberia. The analysis of the atmospheric heat budget reveals that, as postulated by Milankovitch’s hypothesis, the only necessary positive feedback is the snow–albedo feedback, which is initiated by reduced melting of snow and sea ice in the summer. However, this positive feedback is almost fully compensated by an increased meridional heat transport in the atmosphere and a reduced concentration of low Arctic clouds. In contrast to similar previous studies, the ocean heat transport remains largely unchanged. This stability of the northern North Atlantic circulation is explained by the regulating effect of the freshwater import through the Nares Strait and Northwest Passage and the spiciness import by the North Atlantic Current.

Corresponding author address: Markus Jochum, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: markus@ucar.edu

This article is included in the CESM1 Special Collection special collection.

Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 48514 498.

    • Search Google Scholar
    • Export Citation
  • Andrews, J. T., and M. A. W. Mahaffy, 1976: Growth-rate of Laurentide ice sheet and sea-level lowering (with emphasis on 115,000 BP sea-level low). Quat. Res., 6, 167183.

    • Search Google Scholar
    • Export Citation
  • Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10,000,000 years. Quat. Sci. Rev., 10, 297317.

  • Born, A., K. H. Nisancioglu, and P. Braconnot, 2010: Sea ice induced changes in the ocean circulation during the Eemian. Climate Dyn., 35, 13611371.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485.

  • Broecker, W. S., 1998: Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13, 119121.

  • Bryan, F. O., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.

  • Calov, R., A. Ganopolski, M. Claussen, V. Petoukhov, and R. Greve, 2005: Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system. Climate Dyn., 24, 545561.

    • Search Google Scholar
    • Export Citation
  • Capron, E., and Coauthors, 2010: Synchronising EDML and NorthGRIP ice cores using delta O-18 of atmospheric oxygen (delta O-18(atm)) and CH4 measurements over MIS5 (80-123 kyr). Quat. Sci. Rev., 29, 222234.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Crucifix, M., and M. F. Loutre, 2001: Transient simulations over the last interglacial period (126-115kyrBP): Feedback and forcing analysis. Climate Dyn., 19, 417433.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389.

  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and P. J. Valdes, 1995: Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. J. Climate, 8, 24712473.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3, 343360.

    • Search Google Scholar
    • Export Citation
  • Edwards, M. H., 1986: Digital image processing and interpretation of local and global bathymetric data. M.S. thesis, Department of Engineering, Washington University, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., and J. E. Kutzbach, 1996: Role of orbitally induced changes in tundra area in the onset of glaciation. Nature, 381, 503505.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., R. Calov, and M. Claussen, 2010: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Climate Past, 6, 229244.

    • Search Google Scholar
    • Export Citation
  • Gebbie, J., and P. Huybers, 2006: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic d18O observations and a geostrophic inverse model. Geochem. Geophys. Geosyst., 7, 394407.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Gherardi, J.-M., L. Labeyrie, S. Nave, R. Francois, J. F. McManus, and E. Cortijo, 2009: Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography, 24, PA2204, doi:10.1029/2008PA001696.

    • Search Google Scholar
    • Export Citation
  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511363.

    • Search Google Scholar
    • Export Citation
  • Groeger, M., E. Maier-Reimer, U. Mikolajewicz, G. Schurgers, M. Vizcaino, and A. Winguth, 2007: Changes in the hydrological cycle, ocean circulation, and carbon/nutrient cycling during the last interglacial and glacial transition. Paleoceanography, 22, PA4205, doi:10.1029/2006PA001375.

    • Search Google Scholar
    • Export Citation
  • Gualtieri, L., S. Vartanyan, J. Brigham-Grette, and P. M. Anderson, 2003: Pleistocene raised marine deposits on Wrangle Island, northeast Siberia and implications for the presence of an East Siberian ice sheet. Quat. Res., 59, 399410.

    • Search Google Scholar
    • Export Citation
  • Guihou, A., S. Pichat, S. Nave, A. Govin, L. Labeyrie, E. Michel, and C. Waelbroeck, 2010: Late slowdown of the Atlantic Meridional Overturning Circulation during the Last Glacial Inception: New constraints from sedimentary (231Pa/230Th). Earth Planet. Sci. Lett., 289, 520529.

    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., and P. B. Rhines, 2009: Shifting surface currents in the northern North Atlantic Ocean. J. Geophys. Res., 114, C04005, doi:10.1029/2008JC004883.

    • Search Google Scholar
    • Export Citation
  • Hall, A., A. Clement, D. W. J. Thompson, A. Broccoli, and C. Jackson, 2005: The importance of atmospheric dynamics in the Northern Hemisphere wintertime climate response to changes in the earth's orbit. J. Climate, 18, 13151325.

    • Search Google Scholar
    • Export Citation
  • Hátun, H., A. B. Sando, H. Drange, B. Hansen, and H. Valdimarsson, 2005: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309, 18411844.

    • Search Google Scholar
    • Export Citation
  • Hays, J. D., J. Imbrie, and N. J. Shackleton, 1976: Variations in the Earth's orbit, pacemaker of the ice ages. Science, 194, 11211132.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and M. N. Raphael, 2006: Twentieth century simulation of the southern hemisphere climate in coupled models. Part II: Sea ice conditions and variability. Climate Dyn., 26, 229245.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2004: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography, 19, PA1028, doi:10.1029/2002PA000857.

    • Search Google Scholar
    • Export Citation
  • Imbrie, J., and Coauthors, 1992: On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 7, 701738.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., and A. J. Broccoli, 2003: Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation. Climate Dyn., 21, 539557.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., L. B. Tremblay, R. Newton, M. M. Holland, L. A. Mysak, and I. A. Dmitrenko, 2010: A tracer study of the Arctic Ocean's liquid freshwater export variability. J. Geophys. Res., 115, C07015, doi:10.1029/2009JC005873.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea-ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., S. Peacock, J. K. Moore, and K. Lindsay, 2010: Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model. Paleoceanography, 25, PA3201, doi:10.1029/2009PA001856.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 2007: Orbital and milennial Antarctic climate variability over the past 800,000 years. Science, 317, 793796.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., S. Charbit, C. Ritz, M. Khodri, and G. Ramstein, 2004: Quantifying ice-sheet feedbacks during the last glacial inception. Geophys. Res. Lett., 31, L24203, doi:10.1029/2004GL021339.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., H. L. Johnson, D. P. Marshall, S. A. Cunningham, J. J.-M. Hirschi, A. Mujahid, H. L. Bryden, and W. E. Johns, 2009: Basinwide integrated volume transports in an eddy-filled ocean. J. Phys. Oceanogr., 39, 30913110.

    • Search Google Scholar
    • Export Citation
  • Kaspar, F., and U. Cubasch, 2007: Simulation of the Eemian interglacial and possible mechanisms for the glacial inception. Geological Society of America, Special Paper 426, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., K. Raeder, A. Gettelman, and J. Anderson, 2011: The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Climate, 24, 428447.

    • Search Google Scholar
    • Export Citation
  • Khodri, M., Y. Leclainche, G. Ramstein, P. Braconnot, O. Marti, and E. Cortijo, 2001: Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature, 410, 570574.

    • Search Google Scholar
    • Export Citation
  • Khodri, M., G. Ramstein, D. Paillard, J. C. Duplessy, M. Kageyama, and A. Ganopolski, 2003: Modelling the climate evolution from the last interglacial to the start of the last glaciation: The role of Arctic Ocean freshwater budget. Geophys. Res. Lett., 30, 1606, doi:10.1029/2003GL017108.

    • Search Google Scholar
    • Export Citation
  • Kissel, C., C. Laj, L. Labeyrie, T. Dokken, A Voelker, and D. Blamart, 1999: Rapid climate variations during marine isotope stage 3: Magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet. Sci. Lett., 171, 489502.

    • Search Google Scholar
    • Export Citation
  • Kleman, J., K. Jansson, H. De Angelis, A. P. Stroeven, C. Hättestrand, G. Alm, and N. Glasser, 2010: North American Ice Sheet build-up during the last glacial cycle, 115-21 kyr. Quat. Sci. Rev., 29, 20362051.

    • Search Google Scholar
    • Export Citation
  • Kliem, N., and D. A. Greenberg, 2003: Diagnostic simulations of the summer circulation in the Canadian Arctic Archipelago. Atmos.–Ocean, 41, 273289.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., M. M. Holland, D. Schneider, and E. Hunke, 2012: Antarctic sea ice climatology, variability, and late-twentieth-century change in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with nonlocal parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2010: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., W. B. Curry, and N. Slowey, 1999: Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature, 402, 644648.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., W. B. Curry, D. W. Oppo, U. S. Ninneman, C. D. Charles, and J. Munson, 2006: Meridional overturning circulation in the South Atlantic at the last glacial maximum. Geochem. Geophys. Geosyst., 7, 114.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., and W. B. Curry, 2008: On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr., 38, 20142037.

  • Marchitto, T. M., and W. S. Broecker, 2006: Deep water mass geometry of the glacial Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst., 7, Q12003, doi:10.1029/2006GC001323.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1990: Instabilities and multiple equlibria of the thermohaline circulation. Ph.D. thesis, Berichte vom Institut fuer Meereskunde Kiel 194, 126 pp.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., J. Price, T. Sanford, and D. Torres, 2005: Circulation and mixing in the Faroer Channels. Deep-Sea Res. I, 52, 883913.

    • Search Google Scholar
    • Export Citation
  • McCave, I., B. Manighetti, and N. Beveridge, 1995: Circulation in the glacial North Atlantic inferred from grainsize measurements. Nature, 374, 149152.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J.-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of the AMOC linked to deglacial climate changes. Nature, 428, 834837.

    • Search Google Scholar
    • Export Citation
  • Milankovitch, M., 1941: Canon of Insolation and the Ice-Age Problem. Israel Program for Scientific Translations, 484 pp.

  • Neale, R., J. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model. NCAR Tech. Note TN-478+STR, 257 pp.

    • Search Google Scholar
    • Export Citation
  • Otieno, F. O., and D. H. Bromwich, 2009: Contribution of atmospheric circulation to inception of the Laurentide ice sheet at 116 kyr BP. J. Climate, 22, 3957.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto, E. Brady, A. Abe-Ouchi, M. Crucifix, S. Murakami, and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34, L12706, doi:10.1029/2007GL029475.

    • Search Google Scholar
    • Export Citation
  • Peacock, S., 2010: Comment on “Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region” by J.-M. Gherardi et al. Paleoceanography, 25, PA2206, doi:10.1029/2009PA001835.

    • Search Google Scholar
    • Export Citation
  • Peacock, S., 2012: Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Petit, J., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227.

    • Search Google Scholar
    • Export Citation
  • Prinsenberg, S. J., and E. B. Bennett, 1987: Mixing and transport in Barrow Strait, the central part of the Northwest Passage. Cont. Shelf Res., 7, 913935.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757779.

    • Search Google Scholar
    • Export Citation
  • Reeh, N., C. Mayer, H. Miller, H. H. Thomsen, and A. Weidick, 1999: Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophys. Res. Lett., 26, 10391042.

    • Search Google Scholar
    • Export Citation
  • Rohling, E. J., K. Grant, M. Bolshaw, A. P. Roberts, M. Siddall, C. Hemleben, and M. Kucera, 2009: Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci., 2, 500–504, doi:10.1038/NGEO557.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., E. C. Wiebe, and A. J. Weaver, 2003: North Atlantic response to the above-normal export of sea ice from the Arctic. J. Geophys. Res., 108, 3224, doi:10.1029/2001JC001166.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., and A. J. Weaver, 2001: Dependence of multiple climate states on ocean mixing parameters. Geophys. Res. Lett., 28, 10271030.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19, 11671181.

    • Search Google Scholar
    • Export Citation
  • Siddall, M., M. R. Kaplan, J. M. Schaefer, A. Putnam, M.A. Kelly, and B. Goehring, 2010: Changing influence of Antarctic and Greenlandic temperature records on sea-level over the last glacial cycle. Quat. Sci. Rev., 29, 410423.

    • Search Google Scholar
    • Export Citation
  • Stanford, J. D., E. J. Rohling, S. E. Hunter, A. P. Roberts, S. O. Rasmussen, E. Bard, J. McManus, and R. G. Fairbanks, 2006: Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography, 21, PA4103, doi:10.1029/2006PA001340.

    • Search Google Scholar
    • Export Citation
  • Stenni, B., and Coauthors, 2010: The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores. Quat. Sci. Rev., 29, 146159.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.

  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139.

  • Svendsen, J. I., and Coauthors, 2004: Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev., 23, 12291271.

  • Syktus, J., H. Gordon, and J. Chappell, 1994: Sensitivity of a coupled atmosphere-dynamic upper ocean GCM to variations of CO2, solar constant, and orbital forcing. Geophys. Res. Lett., 21, 15991602.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. G., and S. L. Goldstein, 2005: Open-system coral ages reveal persistent suborbital sea-level changes. Science, 308, 401404.

    • Search Google Scholar
    • Export Citation
  • Timm, O., A. Timmermann, A. Abe-Ouchi, F. Saito, and T. Segawa, 2008: On the definition of seasons in paleoclimate simulations with orbital forcing. Paleoceanography, 23, PA2221, doi:10.1029/2007PA001461.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J., and B. Samuels, 1995: Effect of the Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42, 477500.

  • Tziperman, E., M. E. Raymo, P. Huybers, and C. Wunsch, 2006: Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21, PA4206, doi:10.1029/2005PA001241.

    • Search Google Scholar
    • Export Citation
  • Vage, K., and Coauthors, 2009: Surprising return of deep convection to the subpolar North Atlantic ocean in winter 2007-2008. Nat. Geosci., 2, 6772, doi:10.1038/NGEO382.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12, 933946.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., G. Phillipon-Berthier, J. E. Kutzbach, and W. F. Ruddiman, 2011: The role of GCM resolution in simulating glacial inception. Holocene, 16, 112.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2003: Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump. J. Climate, 16, 912927.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2011: The impact of insolation, greenhouse gas forcing and ocean circulation changes on glacial inception. Holocene, 16, 115.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., L. Labeyrie, E. Michel, J. C. Duplessy, J. F. McManus, K. Lambeck, E. Balbon, and M. Labracherie, 2002: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev., 21, 295305.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and L. Mysak, 2002: Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys. Res. Lett., 29, 2102, doi:10.1029/2002GL015120.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 525 149 27
PDF Downloads 258 77 15