The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities

David M. Lawrence Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Keith W. Oleson Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Keith W. Oleson in
Current site
Google Scholar
PubMed
Close
,
Mark G. Flanner Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Mark G. Flanner in
Current site
Google Scholar
PubMed
Close
,
Christopher G. Fletcher Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Christopher G. Fletcher in
Current site
Google Scholar
PubMed
Close
,
Peter J. Lawrence Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Peter J. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Samuel Levis Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Samuel Levis in
Current site
Google Scholar
PubMed
Close
,
Sean C. Swenson Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Sean C. Swenson in
Current site
Google Scholar
PubMed
Close
, and
Gordon B. Bonan Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gordon B. Bonan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reviews developments for the Community Land Model, version 4 (CLM4), examines the land surface climate simulation of the Community Climate System Model, version 4 (CCSM4) compared to CCSM3, and assesses new earth system features of CLM4 within CCSM4. CLM4 incorporates a broad set of improvements including additions of a carbon–nitrogen (CN) biogeochemical model, an urban canyon model, and transient land cover and land use change, as well as revised soil and snow submodels.

Several aspects of the surface climate simulation are improved in CCSM4. Improvements in the simulation of soil water storage, evapotranspiration, surface albedo, and permafrost that are apparent in offline CLM4 simulations are generally retained in CCSM4. The global land air temperature bias is reduced and the annual cycle is improved in many locations, especially at high latitudes. The global land precipitation bias is larger in CCSM4 because of bigger wet biases in central and southern Africa and Australia.

New earth system capabilities are assessed. The present-day air temperature within urban areas is warmer than surrounding rural areas by 1°–2°C, which is comparable to or greater than the change in climate occurring over the last 130 years. The snow albedo feedback is more realistic and the radiative forcing of snow aerosol deposition is calculated as +0.083 W m−2 for present day. The land carbon flux due to land use, wildfire, and net ecosystem production is a source of carbon to the atmosphere throughout most of the historical simulation. CCSM4 is increasingly suited for studies of the role of land processes in climate and climate change.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: dlawren@ucar.edu

This article is included in the CCSM4 Special Collection special collection.

Abstract

This paper reviews developments for the Community Land Model, version 4 (CLM4), examines the land surface climate simulation of the Community Climate System Model, version 4 (CCSM4) compared to CCSM3, and assesses new earth system features of CLM4 within CCSM4. CLM4 incorporates a broad set of improvements including additions of a carbon–nitrogen (CN) biogeochemical model, an urban canyon model, and transient land cover and land use change, as well as revised soil and snow submodels.

Several aspects of the surface climate simulation are improved in CCSM4. Improvements in the simulation of soil water storage, evapotranspiration, surface albedo, and permafrost that are apparent in offline CLM4 simulations are generally retained in CCSM4. The global land air temperature bias is reduced and the annual cycle is improved in many locations, especially at high latitudes. The global land precipitation bias is larger in CCSM4 because of bigger wet biases in central and southern Africa and Australia.

New earth system capabilities are assessed. The present-day air temperature within urban areas is warmer than surrounding rural areas by 1°–2°C, which is comparable to or greater than the change in climate occurring over the last 130 years. The snow albedo feedback is more realistic and the radiative forcing of snow aerosol deposition is calculated as +0.083 W m−2 for present day. The land carbon flux due to land use, wildfire, and net ecosystem production is a source of carbon to the atmosphere throughout most of the historical simulation. CCSM4 is increasingly suited for studies of the role of land processes in climate and climate change.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: dlawren@ucar.edu

This article is included in the CCSM4 Special Collection special collection.

Save
  • Bonan, G. B., and S. Levis, 2010: Quantifying carbon–nitrogen feedbacks in the Community Land Model (CLM4). Geophys. Res. Lett., 37, L07401, doi:10.1029/2010GL042430.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002a: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochem. Cycles, 16, 1021, doi:10.1029/2000GB001360.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang, 2002b: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 31233149.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson, 2011: Global FLUXNET diagnostic models improve canopy processes in the Community Land Model (CLM4). J. Geophys. Res., 116, G02014, doi:10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Branstetter, M. L., and J. S. Famiglietti, 1999: Testing the sensitivity of GCM-simulated runoff to climate model resolution using a parallel river transport algorithm. Preprints, 14th Conf. on Hydrology, Dallas, TX, Amer. Meteor. Soc., 6B.11. [Available online at http://ams.confex.com/ams/older/99annual/abstracts/851.htm.]

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Brown, J., O. J. Ferrians, J. A. Heginbottom, and E. S. Melnikov, 1998: International permafrost association circum-Arctic map of permafrost and ground-ice conditions. U.S. Geological Survey, Circum-Pacific Map Series, Map CP-45, Scale 1:10 000 000. [Available online at http://www.nsidc.org.]

    • Search Google Scholar
    • Export Citation
  • Brown, J., K. M. Hinkel, and F. E. Nelson, 2000: The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results. Polar Geogr., 24, 165258.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222143.

  • Dai, A. G., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. Bates, B. P. Briegleb, S. R. Jayne, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19, 23022324.

    • Search Google Scholar
    • Export Citation
  • Fernandes, R., H. Zhao, X. Wang, J. Key, X. Qu, and A. Hall, 2009: Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations. Geophys. Res. Lett., 36, L21702, doi:10.1029/2009GL040057.

    • Search Google Scholar
    • Export Citation
  • Fisher, R., and Coauthors, 2010: Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol., 187, 666681.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 24812497.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. Discuss., 6, 107173.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568.

  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2008: Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res., 113, D05211, doi:10.1029/2007JD009092.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. C. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice. J. Climate, 25, 14131430.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., S. Frolking, M. G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S. W. Pacala, and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229.

    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kloster, S., and Coauthors, 2010: Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 7, 18771902, doi:10.5194/bg-7-1877-2010.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. Discuss., 10, 49635019, doi:10.5194/acpd-10-4963-2010.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, doi:10.1007/s00382-007-0278-1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2010: The contribution of changes in snow conditions on future ground climate. Climate Dyn., 34, 969981, doi:10.1007/s00382-009-0537-4.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: Partitioning of evaporation into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky, 2008: The sensitivity of a model projection of near-surface permafrost degradation to soil column depth and inclusion of soil organic matter. J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate, 25, 22072225.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeophysical and biogeochemical impacts of land cover change and forestry in the Community Climate System Model (CCSM4). J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004: The Community Land Model’s dynamic global vegetation model (CLM-DGVM): Technical description and user’s guide. NCAR Tech. Note TN-459+IA, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, cited 2009a: Terrestrial precipitation: 1900–2008 gridded monthly time series, version 2.01. [Available online at http://climate.geog.udel.edu/~climate/.]

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, cited 2009b: Terrestrial air temperature: 1900–2008 gridded monthly time series, version 2.01. [Available online at http://climate.geog.udel.edu/~climate.]

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi:10.1029/2010GL042845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset—A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Z. L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, doi:10.1029/2007JD008674.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., 2012: Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Climate, 25, 13901412.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note TN-461+STR, 174 pp.

  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008a: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008b: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, and T. Jackson, 2010a: An examination of urban heat island characteristics in a global climate model. Int. J. Climatol., 31, 18481865, doi:10.1002/joc.2201.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010b: Technical description of version 4.0 of the Community Land Model. NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2002: Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975.

    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2007: What controls the strength of snow-albedo feedback? J. Climate, 20, 39713981.

  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, doi:10.1029/2007GB002952.

    • Search Google Scholar
    • Export Citation
  • Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. Mahowald, and P. Hess, 2011: Barriers to predicting global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 19251953, doi:10.5194/bg-8-1925-2011.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., and X. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3. 5). J. Geophys. Res., 114, D01107, doi:10.1029/2008JD010834.

    • Search Google Scholar
    • Export Citation
  • Stöckli, R., and Coauthors, 2008: The use of Fluxnet in the Community Land Model development. J. Geophys. Res., 113, doi:10.1029/2007JG000562.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in, CESM1. J. Adv. Model. Earth Syst., in press.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles, 21, GB4018, doi:10.1029/2006GB002868.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Coauthors, 2009: Carbon–nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 20992120.

    • Search Google Scholar
    • Export Citation
  • Wang, A. H., and X. Zeng, 2009: Improving the treatment of the vertical snow burial fraction over short vegetation in the NCAR CLM3. Adv. Atmos. Sci., 26, 877886.

    • Search Google Scholar
    • Export Citation
  • Wang, X. J., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., and M. Decker, 2009: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308319.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. D., X. B. Zeng, and M. Barlage, 2008: Growing temperate shrubs over arid and semiarid regions in the Community Land Model–Dynamic Global Vegetation Model. Global Biogeochem. Cycles, 22, GB3003, doi:10.1029/2007GB003014.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. A. Heginbottom, R. G. Barry, and J. Brown, 2000: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr., 24, 126131.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1289 433 31
PDF Downloads 694 185 18