Temporal- and Spatial-Scale Dependence of Three CMIP3 Climate Models in Simulating the Surface Temperature Trend in the Twentieth Century

Koichi Sakaguchi Department of Atmospheric Sciences, The University of Arizona, Tuscon, Arizona

Search for other papers by Koichi Sakaguchi in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Atmospheric Sciences, The University of Arizona, Tuscon, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
, and
Michael A. Brunke Department of Atmospheric Sciences, The University of Arizona, Tuscon, Arizona

Search for other papers by Michael A. Brunke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Motivated by increasing interests in regional- and decadal-scale climate predictions, this study systematically analyzed the spatial- and temporal-scale dependence of the prediction skill of global climate models in surface air temperature (SAT) change in the twentieth century. The linear trends of annual mean SAT over moving time windows (running linear trends) from two observational datasets and simulations by three global climate models [Community Climate System Model, version 3.0 (CCSM3.0), Climate Model, version 2.0 (CM2.0), and Model E-H] that participated in CMIP3 are compared over several temporal (10-, 20-, 30-, 40-, and 50-yr trends) and spatial (5° × 5°, 10° × 10°, 15° × 15°, 20° × 20°, 30° × 30°, 30° latitudinal bands, hemispheric, and global) scales. The distribution of root-mean-square error is improved with increasing spatial and temporal scales, approaching the observational uncertainty range at the largest scales. Linear correlation shows a similar tendency, but the limited observational length does not provide statistical significance over the longer temporal scales. The comparison of RMSE to climatology and a Monte Carlo test using preindustrial control simulations suggest that the multimodel ensemble mean is able to reproduce robust climate signals at 30° zonal mean or larger spatial scales, while correlation requires hemispherical or global mean for the twentieth-century simulations. Persistent lower performance is observed over the northern high latitudes and the North Atlantic southeast of Greenland. Although several caveats exist for the metrics used in this study, the analyses across scales and/or over running time windows can be taken as one of the approaches for climate system model evaluations.

Corresponding author address: Koichi Sakaguchi, Department of Atmospheric Sciences, The University of Arizona, 1118 E. 4th St., Tucson, AZ 85721-0081. E-mail: ksa@email.arizona.edu

Abstract

Motivated by increasing interests in regional- and decadal-scale climate predictions, this study systematically analyzed the spatial- and temporal-scale dependence of the prediction skill of global climate models in surface air temperature (SAT) change in the twentieth century. The linear trends of annual mean SAT over moving time windows (running linear trends) from two observational datasets and simulations by three global climate models [Community Climate System Model, version 3.0 (CCSM3.0), Climate Model, version 2.0 (CM2.0), and Model E-H] that participated in CMIP3 are compared over several temporal (10-, 20-, 30-, 40-, and 50-yr trends) and spatial (5° × 5°, 10° × 10°, 15° × 15°, 20° × 20°, 30° × 30°, 30° latitudinal bands, hemispheric, and global) scales. The distribution of root-mean-square error is improved with increasing spatial and temporal scales, approaching the observational uncertainty range at the largest scales. Linear correlation shows a similar tendency, but the limited observational length does not provide statistical significance over the longer temporal scales. The comparison of RMSE to climatology and a Monte Carlo test using preindustrial control simulations suggest that the multimodel ensemble mean is able to reproduce robust climate signals at 30° zonal mean or larger spatial scales, while correlation requires hemispherical or global mean for the twentieth-century simulations. Persistent lower performance is observed over the northern high latitudes and the North Atlantic southeast of Greenland. Although several caveats exist for the metrics used in this study, the analyses across scales and/or over running time windows can be taken as one of the approaches for climate system model evaluations.

Corresponding author address: Koichi Sakaguchi, Department of Atmospheric Sciences, The University of Arizona, 1118 E. 4th St., Tucson, AZ 85721-0081. E-mail: ksa@email.arizona.edu
Save
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9, 15181530.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Castro, L. C., F. Dominguez, and H. I. Chang, 2011: Creating dynamically downscaled seasonal climate forecast and climate change projection information for the North American region suitable for decision making purposes. Preprints, 25th Conf. on Hydrology and 23rd Conf. on Climate Variability and Change, Seattle, WA, Amer. Meteor. Soc., J12.1. [Available online at http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17032?recordingid=17032.]

  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 848–940.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2010: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., J. Cañon, and J. Valdes, 2010: IPCC-AR4 climate simulations for the Southwestern US: The importance of future ENSO projections. Climatic Change, 99, 499514, doi:10.1007/s10584-009-9672-5.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • Freidlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P., K. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 8091.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560.

  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104 (D24), 30 99731 022.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 8, 10951107.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • International Ad Hoc Detection and Attribution Group, 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 12911314.

    • Search Google Scholar
    • Export Citation
  • Jun, M., R. Knutti, and D. W. Nychka, 2008: Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J. Amer. Stat. Assoc., 103, 934947.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., T. L. Delworth, K. W. Dixon, I. M. Held, J. Lu, V. Ramaswamy, and M. D. Schwarzkorf, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 16241651.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X.-Z. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153.

    • Search Google Scholar
    • Export Citation
  • Lee, T. C. K., F. W. Zwiers, X. Zhang, and M. Tsao, 2006: Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing. J. Climate, 19, 53055318.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., R. M. Dole, C. Jones, I. Bladé, and D. Allured, 2010: Influence of choice of time period on global surface temperature trend estimates. Bull. Amer. Meteor. Soc., 91, 14851491.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction. Bull. Amer. Meteor. Soc., 10, 14671485.

  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, R. Hagedorn, and A. Weisheimer, 2005a: Probabilistic prediction of climate using multi-model ensembles: From basics to applications. Philos. Trans. Roy. Soc., 360B, 19911998, doi:10.1098/rstb.2005.1750.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher, 2005b: Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci., 33, 163193.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Mesoscale Meteorological Modeling. Academic Press, 676 pp.

  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106, 84418446, doi:10.1073/pnas.0900094106.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kenedy, M. Vanicck, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the midnineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res., 111, D15111, doi:10.1029/2005JD006473.

    • Search Google Scholar
    • Export Citation
  • Salazar, L. F., C. A. Nobre, and M. D. Oyama, 2007: Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett., 34, L09708, doi:10.1029/2007GL029695.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS Model-E: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2005: A global merged land–air–sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 20212036.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141156.

    • Search Google Scholar
    • Export Citation
  • Spak, S., T. Holloway, B. Lynn, and R. Goldberg, 2007: A comparison of statistical and dynamical downscaling for surface temperature in North America. J. Geophys. Res., 112, D08101, doi:10.1029/2005JD006712.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and S. F. B. Tett, 1998: Scale-dependent detection of climate change. J. Climate, 11, 32823294.

  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. WIREs Climate Change, 1, 192211.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experimental design. Lawrence Livermore National Laboratory Rep., 32 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/experiment_design.html.]

  • Thompson, D. W. J., J. J. Kenedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the midtwentieth century in observed global-mean surface temperature. Nature, 453, 646649.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Coauthors, 2009: Carbon–nitrogen interactions regulate climate–carbon cycle feedbacks: Results from an atmosphere–ocean general circulation model. Biogeosciences, 6, 20992120.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and T. N. Palmer, 2007: Ensemble decadal predictions from analysed initial conditions. Philos. Trans. Roy. Soc., 365A, 21792191, doi:10.1098/rsta.2007.2079.

    • Search Google Scholar
    • Export Citation
  • Wang, M., J. E. Overland, V. Kattsov, J. E. Walsh, X. Zhang, and T. Pavlova, 2007: Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. J. Climate, 20, 10931107.

    • Search Google Scholar
    • Export Citation
  • Wang, T., A. Hamann, D. L. Spittlehouse, and S. N. Aitken, 2006: Development of scale-free climate data for western Canada for use in resource management. Int. J. Climatol., 26, 383397.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and C. L. Parkinson, 2005: Introduction to Three-Dimensional Climate Modeling. University Science Books, 368 pp.

  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 648 pp.

  • Zwiers, F., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 78 15
PDF Downloads 121 36 9