Tropical Tropospheric-Only Responses to Absorbing Aerosols

Geeta G. Persad NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Geeta G. Persad in
Current site
Google Scholar
PubMed
Close
,
Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yi Ming in
Current site
Google Scholar
PubMed
Close
, and
V. Ramaswamy NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by V. Ramaswamy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Absorbing aerosols affect the earth’s climate through direct radiative heating of the troposphere. This study analyzes the tropical tropospheric-only response to a globally uniform increase in black carbon, simulated with an atmospheric general circulation model, to gain insight into the interactions that determine the radiative flux perturbation. Over the convective regions, heating in the free troposphere hinders the vertical development of deep cumulus clouds, resulting in the detrainment of more cloudy air into the large-scale environment and stronger cloud reflection. A different mechanism operates over the subsidence regions, where heating near the boundary layer top causes a substantial reduction in low cloud amount thermodynamically by decreasing relative humidity and dynamically by lowering cloud top. These findings, which align well with previous general circulation model and large-eddy simulation calculations for black carbon, provide physically based explanations for the main characteristics of the tropical tropospheric adjustment. The implications for quantifying the climate perturbation posed by absorbing aerosols are discussed.

Corresponding author address: Geeta Persad, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: geeta.persad@noaa.gov

Abstract

Absorbing aerosols affect the earth’s climate through direct radiative heating of the troposphere. This study analyzes the tropical tropospheric-only response to a globally uniform increase in black carbon, simulated with an atmospheric general circulation model, to gain insight into the interactions that determine the radiative flux perturbation. Over the convective regions, heating in the free troposphere hinders the vertical development of deep cumulus clouds, resulting in the detrainment of more cloudy air into the large-scale environment and stronger cloud reflection. A different mechanism operates over the subsidence regions, where heating near the boundary layer top causes a substantial reduction in low cloud amount thermodynamically by decreasing relative humidity and dynamically by lowering cloud top. These findings, which align well with previous general circulation model and large-eddy simulation calculations for black carbon, provide physically based explanations for the main characteristics of the tropical tropospheric adjustment. The implications for quantifying the climate perturbation posed by absorbing aerosols are discussed.

Corresponding author address: Geeta Persad, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: geeta.persad@noaa.gov
Save
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G., L. Cao, G. Bala, and K. Caldeira, 2012: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 39, 897911, doi:10.1007/s00382-011-1052-y.

    • Search Google Scholar
    • Export Citation
  • Cook, J., and E. J. Highwood, 2004: Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 175191.

    • Search Google Scholar
    • Export Citation
  • Erlick, C., V. Ramaswamy, and L. M. Russell, 2006: Differing regional responses to a perturbation in solar cloud absorption in the SKYHI general circulation model. J. Geophys. Res., 111, D06204, doi:10.1029/2005JD006491.

    • Search Google Scholar
    • Export Citation
  • Forster, P., R. S. Freckleton, and K. P. Shine, 1997: On aspects of the concept of radiative forcing. Climate Dyn., 13, 547560.

  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864.

  • Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: An alternative scenario. J. Geophys. Res., 97, 98759880.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Haywood, J. M., L. J. Donner, A. Jones, and J.-C. Golaz, 2009: Global indirect radiative forcing caused by aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System, J. Heintzenberg and R. Charlson, Eds., MIT Press, 451–467.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695697.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, 2003: A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Climate Dyn., 20, 843854.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and A. Del Genio, 2010: Black carbon absorption effects on cloud cover, review and synthesis. Atmos. Chem. Phys. Discuss., 10, 73237346.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and Coauthors, 2009: Total aerosol effect: Radiative forcing or radiative flux perturbation? Atmos. Chem. Phys. Discuss., 9, 32353246.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Lao, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339.

  • Ming, Y., V. Ramaswamy, L. J. Donner, and V. T. J. Phillips, 2006: A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci., 63, 13481356.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, L. J. Donner, V. T. J. Phillips, S. A. Klein, P. A. Ginoux, and L. W. Horowitz, 2007: Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 11891209.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37, L13701, doi:10.1029/2010GL042895.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., S. Y. Zhang, and C. C. Chuang, 2003: Soot and smoke may not warm climate. J. Geophys. Res., 108, 4657, doi:10.1029/2003JD003409.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227.

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124.

    • Search Google Scholar
    • Export Citation
  • Randles, C., and V. Ramaswamy, 2008: Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J. Geophys. Res., 113, D21203, doi:10.1029/2008JD010140.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 838 277 33
PDF Downloads 215 71 14