Evaluation and Intercomparison of Cloud Fraction and Radiative Fluxes in Recent Reanalyses over the Arctic Using BSRN Surface Observations

Behnjamin J. Zib Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Behnjamin J. Zib in
Current site
Google Scholar
PubMed
Close
,
Xiquan Dong Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Xiquan Dong in
Current site
Google Scholar
PubMed
Close
,
Baike Xi Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Baike Xi in
Current site
Google Scholar
PubMed
Close
, and
Aaron Kennedy Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Aaron Kennedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With continual advancements in data assimilation systems, new observing systems, and improvements in model parameterizations, several new atmospheric reanalysis datasets have recently become available. Before using these new reanalyses it is important to assess the strengths and underlying biases contained in each dataset. A study has been performed to evaluate and compare cloud fractions (CFs) and surface radiative fluxes in several of these latest reanalyses over the Arctic using 15 years (1994–2008) of high-quality Baseline Surface Radiation Network (BSRN) observations from Barrow (BAR) and Ny-Alesund (NYA) surface stations. The five reanalyses being evaluated in this study are (i) NASA's Modern-Era Retrospective analysis for Research and Applications (MERRA), (ii) NCEP's Climate Forecast System Reanalysis (CFSR), (iii) NOAA's Twentieth Century Reanalysis Project (20CR), (iv) ECMWF's Interim Reanalysis (ERA-I), and (v) NCEP–Department of Energy (DOE)'s Reanalysis II (R2). All of the reanalyses show considerable bias in reanalyzed CF during the year, especially in winter. The large CF biases have been reflected in the surface radiation fields, as monthly biases in shortwave (SW) and longwave (LW) fluxes are more than 90 (June) and 60 W m−2 (March), respectively, in some reanalyses. ERA-I and CFSR performed the best in reanalyzing surface downwelling fluxes with annual mean biases less than 4.7 (SW) and 3.4 W m−2 (LW) over both Arctic sites. Even when producing the observed CF, radiation flux errors were found to exist in the reanalyses suggesting that they may not always be dependent on CF errors but rather on variations of more complex cloud properties, water vapor content, or aerosol loading within the reanalyses.

Corresponding author address: Dr. Xiquan Dong, Department of Atmospheric Sciences, University of North Dakota, 4149 University Ave. Stop 9006, Grand Forks, ND 58202-9006. E-mail: dong@aero.und.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Abstract

With continual advancements in data assimilation systems, new observing systems, and improvements in model parameterizations, several new atmospheric reanalysis datasets have recently become available. Before using these new reanalyses it is important to assess the strengths and underlying biases contained in each dataset. A study has been performed to evaluate and compare cloud fractions (CFs) and surface radiative fluxes in several of these latest reanalyses over the Arctic using 15 years (1994–2008) of high-quality Baseline Surface Radiation Network (BSRN) observations from Barrow (BAR) and Ny-Alesund (NYA) surface stations. The five reanalyses being evaluated in this study are (i) NASA's Modern-Era Retrospective analysis for Research and Applications (MERRA), (ii) NCEP's Climate Forecast System Reanalysis (CFSR), (iii) NOAA's Twentieth Century Reanalysis Project (20CR), (iv) ECMWF's Interim Reanalysis (ERA-I), and (v) NCEP–Department of Energy (DOE)'s Reanalysis II (R2). All of the reanalyses show considerable bias in reanalyzed CF during the year, especially in winter. The large CF biases have been reflected in the surface radiation fields, as monthly biases in shortwave (SW) and longwave (LW) fluxes are more than 90 (June) and 60 W m−2 (March), respectively, in some reanalyses. ERA-I and CFSR performed the best in reanalyzing surface downwelling fluxes with annual mean biases less than 4.7 (SW) and 3.4 W m−2 (LW) over both Arctic sites. Even when producing the observed CF, radiation flux errors were found to exist in the reanalyses suggesting that they may not always be dependent on CF errors but rather on variations of more complex cloud properties, water vapor content, or aerosol loading within the reanalyses.

Corresponding author address: Dr. Xiquan Dong, Department of Atmospheric Sciences, University of North Dakota, 4149 University Ave. Stop 9006, Grand Forks, ND 58202-9006. E-mail: dong@aero.und.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Save
  • Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3845.

  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ECMWF Tech. Rep. 1, 16 pp. [Available online at http://www.ecmwf.int/publications/library/do/references/show?id=89203.]

  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and S.-H. Wang, 2005: Evaluation of the NCEP–NCAR and ECMWF 15- and 40-yr reanalyses using rawinsonde data from two independent Arctic field experiments. Mon. Wea. Rev., 133, 35623578.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. I. Cullather, and M. C. Serreze, 2000: Reanalyses depiction of the Arctic atmospheric moisture budget. The Fresh Water Budget of the Arctic Ocean, E. L. Lewis, Ed., Kluwer Academic Publishers, 163–196.

  • Bromwich, D. H., S.-H. Wang, and A. J. Monaghan, 2002: ERA-40 representation of the Arctic atmospheric moisture budget. ECMWF Workshop on Reanalysis, ECMWF Re-Analysis Project Report Series, Vol. 3, ECMWF, 287–298.

  • Bromwich, D. H., R. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772.

  • Chou, M.-D., and K.-T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 12031208.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. Series on Global Modeling and Data Assimilation 104606, Vol. 15, 40 pp.

  • Chou, M.-D., M. J. Suarez, X. Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. Series on Global Modeling and Data Assimilation 104606, Vol. 19, 56 pp.

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2006: Feasability of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Curry, J. A., J. Schramm, and E. E. Ebert, 1995: On the sea ice albedo climate feedback mechanism. J. Climate, 8, 240247.

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445461.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, and P. Minnis, 2006: A climatology of midlatitude continental clouds from ARM SGP site. Part II: Cloud fraction and surface radiative forcing. J. Climate, 19, 17651783.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, K. Crosby, C. N. Long, R. Stone, and M. Shupe, 2010: A 10-yr climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115, D17212, doi:10.1029/2009JD013489.

    • Search Google Scholar
    • Export Citation
  • Flynn, C., 2004: Vaisala ceilometer (Model CT25K) handbook. ARM Rep. TR-020, 17 pp.

  • Francis, J. A., 2002: Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett., 29, 1315.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., E. Hunter, J. R. Key, and X. Wang, 2005: Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett., 32, L21501, doi:10.1029/2005GL024376.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., S. G. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8, 14291446.

    • Search Google Scholar
    • Export Citation
  • Hou, Y., S. Moorthi, and K. Compana, 2002: Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note 441, 46 pp. [Available at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on441.pdf.]

  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J. J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettleman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalysis datasets with the DOE ARM SGP continuous forcing data. J. Climate, 24, 45414557.

    • Search Google Scholar
    • Export Citation
  • Lanconelli, C., M. Busetto, E. G. Dutton, G. König-Langlo, M. Maturilli, R. Sieger, V. Vitale, and T. Yamanouchi, 2011: Polar baseline surface radiation measurements during the International Polar Year 2007-2009. Earth Syst. Sci. Data, 3, 18.

    • Search Google Scholar
    • Export Citation
  • Marty, C., and Coauthors, 2003: Downward longwave irradiance uncertainty under Arctic atmospheres: Measurements and modeling. J. Geophys. Res., 108, 4358, doi:10.1029/2002JD002937.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H. L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Technical Procedures Bulletin, Vol. 484, National Weather Service, Silver Spring, MD, 14 pp.

  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometery for climate change research. Bull. Amer. Meteor. Soc., 79, 21152136.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation 104606, Vol. 27, 92 pp.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Serreze, M. C., and C. M. Hurst, 2000: Representation of mean Arctic precipitation from NCEP–NCAR and ERA reanalyses. J. Climate, 13, 182201.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264.

  • Serreze, M. C., R. G. Barry, M. C. Rehder, and J. E. Walsh, 1995: Variability in atmospheric circulation and moisture flux over the Arctic. Philos. Trans. Roy. Soc. London, 352A, 215225.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 1–18.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334.

    • Search Google Scholar
    • Export Citation
  • Wendler, G., F. Eaton, and T. Ohtake, 1981: Multiple reflection effects on irradiance in the presence of arctic stratus clouds. J. Geophys. Res., 86, 20492057.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1351 834 49
PDF Downloads 287 66 15