In Situ Observations of Madden–Julian Oscillation Mixed Layer Dynamics in the Indian and Western Pacific Oceans

Kyla Drushka Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Kyla Drushka in
Current site
Google Scholar
PubMed
Close
,
Janet Sprintall Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Janet Sprintall in
Current site
Google Scholar
PubMed
Close
,
Sarah T. Gille Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Sarah T. Gille in
Current site
Google Scholar
PubMed
Close
, and
Susan Wijffels Center for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

Search for other papers by Susan Wijffels in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The boreal winter response of the ocean mixed layer to the Madden–Julian oscillation (MJO) in the Indo-Pacific region is determined using in situ observations from the Argo profiling float dataset. Composite averages over numerous events reveal that the MJO forces systematic variations in mixed layer depth and temperature throughout the domain. Strong MJO mixed layer depth anomalies (>15 m peak to peak) are observed in the central Indian Ocean and in the far western Pacific Ocean. The strongest mixed layer temperature variations (>0.6°C peak to peak) are found in the central Indian Ocean and in the region between northwest Australia and Java. A heat budget analysis is used to evaluate which processes are responsible for mixed layer temperature variations at MJO time scales. Though uncertainties in the heat budget are on the same order as the temperature trend, the analysis nonetheless demonstrates that mixed layer temperature variations associated with the canonical MJO are driven largely by anomalous net surface heat flux. Net heat flux is dominated by anomalies in shortwave and latent heat fluxes, the relative importance of which varies between active and suppressed MJO conditions. Additionally, rapid deepening of the mixed layer in the central Indian Ocean during the onset of active MJO conditions induces significant basin-wide entrainment cooling. In the central equatorial Indian Ocean, MJO-induced variations in mixed layer depth can modulate net surface heat flux, and therefore mixed layer temperature variations, by up to ~40%. This highlights the importance of correctly representing intraseasonal mixed layer depth variations in climate models in order to accurately simulate mixed layer temperature, and thus air–sea interaction, associated with the MJO.

Current affiliation: Laboratoire d’Océanographie Expérimentation et Approches Numériques, Paris, France.

Corresponding author address: Kyla Drushka, Laboratoire d’Océanographie Expérimentation et Approches Numériques, 4, place Jussieu, 75252 Paris CEDEX 05, France. E-mail: kyla.drushka@locean-ipsl.upmc.fr

Abstract

The boreal winter response of the ocean mixed layer to the Madden–Julian oscillation (MJO) in the Indo-Pacific region is determined using in situ observations from the Argo profiling float dataset. Composite averages over numerous events reveal that the MJO forces systematic variations in mixed layer depth and temperature throughout the domain. Strong MJO mixed layer depth anomalies (>15 m peak to peak) are observed in the central Indian Ocean and in the far western Pacific Ocean. The strongest mixed layer temperature variations (>0.6°C peak to peak) are found in the central Indian Ocean and in the region between northwest Australia and Java. A heat budget analysis is used to evaluate which processes are responsible for mixed layer temperature variations at MJO time scales. Though uncertainties in the heat budget are on the same order as the temperature trend, the analysis nonetheless demonstrates that mixed layer temperature variations associated with the canonical MJO are driven largely by anomalous net surface heat flux. Net heat flux is dominated by anomalies in shortwave and latent heat fluxes, the relative importance of which varies between active and suppressed MJO conditions. Additionally, rapid deepening of the mixed layer in the central Indian Ocean during the onset of active MJO conditions induces significant basin-wide entrainment cooling. In the central equatorial Indian Ocean, MJO-induced variations in mixed layer depth can modulate net surface heat flux, and therefore mixed layer temperature variations, by up to ~40%. This highlights the importance of correctly representing intraseasonal mixed layer depth variations in climate models in order to accurately simulate mixed layer temperature, and thus air–sea interaction, associated with the MJO.

Current affiliation: Laboratoire d’Océanographie Expérimentation et Approches Numériques, Paris, France.

Corresponding author address: Kyla Drushka, Laboratoire d’Océanographie Expérimentation et Approches Numériques, 4, place Jussieu, 75252 Paris CEDEX 05, France. E-mail: kyla.drushka@locean-ipsl.upmc.fr
Save
  • Anderson, S., R. Weller, and R. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085.

    • Search Google Scholar
    • Export Citation
  • Ardizzone, J., R. Atlas, R. Hoffman, J. Jusem, S. Leidner, and D. Moroni, 2009: New multiplatform ocean surface wind product available. Eos, Trans. Amer. Geophys. Union, 90, 231.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., and J. Duvel, 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 36293646.

  • Bernie, D., S. Woolnough, J. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., E. Guilyardi, G. Madec, J. Slingo, S. Woolnough, and J. Cole, 2008: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dyn., 31, 909925, doi:10.1007/s00382-008-0429-z.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., and M. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102 (C4), 85338553.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., and M. McPhaden, 2002: Barrier layer formation during westerly wind bursts. J. Geophys. Res., 107 (C12), 21012112.

  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112, C06011, doi:10.1029/2006JC003953.

    • Search Google Scholar
    • Export Citation
  • Duncan, B., and W. Han, 2009: Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madden–Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 114, C05002, doi:10.1029/2008JC004958.

    • Search Google Scholar
    • Export Citation
  • Duvel, J., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 30563082.

    • Search Google Scholar
    • Export Citation
  • Duvel, J., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61, 10041023.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. Flatau, P. Phoebus, and P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386.

    • Search Google Scholar
    • Export Citation
  • Gregg, W., 2008: Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst., 69 (3–4), 205225.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Yuan, W. Liu, and D. Halkides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden-Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 112, C04001, doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., and M. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 22252237.

  • Hendon, H., and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10, 647661.

    • Search Google Scholar
    • Export Citation
  • Inness, P., and J. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364.

    • Search Google Scholar
    • Export Citation
  • Jayakumar, A., J. Vialard, M. Lengaigne, C. Gnanaseelan, J. P. McCreary, and P. Kumar, 2011: Processes controlling the surface temperature signature of the Madden-Julian Oscillation in the thermocline ridge of the Indian Ocean. Climate Dyn., 37 (11–12), 22172234, doi:10.1007/s00382-010-0953-5.

    • Search Google Scholar
    • Export Citation
  • Johnson, E., F. Bonjean, G. Lagerloef, J. Gunn, and G. Mitchum, 2007: Validation and error analysis of OSCAR sea surface currents. J. Atmos. Oceanic Technol., 24, 688701.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., M. McPhaden, and K. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 (C6), 10 61310 631.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada, 2002: Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J. Oceanogr., 58, 213225.

    • Search Google Scholar
    • Export Citation
  • Kumar, B. P., J. Vialard, M. Lengaigne, V. Murty, and M. McPhaden, 2011: TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation against observations. Climate Dyn., doi:10.1007/s00382-011-1115-0, in press.

    • Search Google Scholar
    • Export Citation
  • Lau, W., and D. Waliser, 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, 474 pp.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lucas, L., D. Waliser, and R. Murtugudde, 2010: Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation. J. Geophys. Res., 115, C05012, doi:10.1029/2009JC005450.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357.

  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and J. Kiehl, 2002: MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Climate, 15, 675689.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and A. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 37173720.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., P. Singhruck, and K. J. Heywood, 2010: Ocean temperature and salinity components of the Madden–Julian oscillation observed by Argo floats. Climate Dyn., 35 (7), 11491168, doi:10.1007/s00382-009-0631-7.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2002: Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Climate, 15, 26322647.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antoine, 1994: Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24, 16521665.

    • Search Google Scholar
    • Export Citation
  • Resplandy, L., J. Vialard, M. Lévy, O. Aumont, and Y. Dandonneau, 2009: Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. J. Geophys. Res., 114, C07024, doi:10.1029/2008JC005246.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82 (2), 81100.

    • Search Google Scholar
    • Export Citation
  • Saji, N., S. Xie, and C. Tam, 2006: Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett., 33, L14704, doi:10.1029/2006GL026525.

    • Search Google Scholar
    • Export Citation
  • Sato, N., K. Yoneyama, Y. Takayabu, R. Shirooka, and M. Yoshizaki, 2011: Variability of the oceanic surface and subsurface layers in the warm pool associated with the atmospheric northward-propagating intraseasonal variability. Deep-Sea Res. II, 57 (13–14), 12011211, doi:10.1016/j.dsr2.2009.12.009.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., and J. Godfrey, 2003: Indian Ocean intraseasonal variability in an ocean general circulation model. J. Climate, 16, 2139.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11, 26682685.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. Hendon, 2001: Upper-ocean heat budget in response to the Madden–Julian Oscillation in the western equatorial Pacific. J. Climate, 14, 41474165.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. McPhaden, 1994: Surface layer variations observed in multiyear time series measurements from the western equatorial Pacific. J. Geophys. Res., 99, 963979.

    • Search Google Scholar
    • Export Citation
  • Sweeney, C., A. Gnanadesikan, S. Griffies, M. Harrison, A. Rosati, and B. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 11031119.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332.

  • Vialard, J., and P. Delecluse, 1998: An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J. Phys. Oceanogr., 28, 10891106.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., G. Foltz, M. McPhaden, J. Duvel, and C. de Boyer Montégut, 2008: Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys. Res. Lett., 35, L19608, doi:10.1029/2008GL035238.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., and N. Saji, 2008: Mechanisms of south Indian Ocean intraseasonal cooling. Geophys. Res. Lett., 35, L23607, doi:10.1029/2008GL035733.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. Lau, and J. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden-Julian Oscillation. J. Geophys. Res., 108, 3160, doi:10.1029/2002JC001620.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, P. Strutton, and J.-L. Li, 2005: Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden-Julian Oscillation. Geophys. Res. Lett., 32, L23602, doi:10.1029/2005GL024300.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. Balmaseda, 2007: The role of the ocean in the Madden-Julian Oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and M. J. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13, 22612276.

  • Zhang, G. J., and M. J. McPhaden, 1995: The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8, 589605.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Rossow, A. Lacis, V. Oinas, and M. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 475 120 14
PDF Downloads 352 95 11