On the Use of Reanalysis Data for Downscaling

S. Brands Instituto de Física de Cantabria, University of Cantabria, Santander, Spain

Search for other papers by S. Brands in
Current site
Google Scholar
PubMed
Close
,
J. M. Gutiérrez Instituto de Física de Cantabria, University of Cantabria, Santander, Spain

Search for other papers by J. M. Gutiérrez in
Current site
Google Scholar
PubMed
Close
,
S. Herrera Instituto de Física de Cantabria, University of Cantabria, Santander, Spain

Search for other papers by S. Herrera in
Current site
Google Scholar
PubMed
Close
, and
A. S. Cofiño Department of Applied Mathematics and Computer Science, University of Cantabria, Santander, Spain

Search for other papers by A. S. Cofiño in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice.

Corresponding author address: S. Brands, Instituto de Física de Cantabria, University of Cantabria, Avenida de los Castros, Santander 39005, Spain. E-mail: brandssf@unican.es

Abstract

In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice.

Corresponding author address: S. Brands, Instituto de Física de Cantabria, University of Cantabria, Avenida de los Castros, Santander 39005, Spain. E-mail: brandssf@unican.es
Save
  • Abaurrea, J., and J. Asin, 2005: Forecasting local daily precipitation patterns in a climate change scenario. Climate Res., 28, 183197.

    • Search Google Scholar
    • Export Citation
  • Ben Daoud, A., E. Sauquet, M. Lang, C. Obled, and G. Bontron, 2009: Comparison of 850-hPa relative humidity between ERA-40 and NCEP–NCAR re-analyses: Detection of suspicious data in ERA-40. Atmos. Sci. Lett., 10, 4347, doi:10.1002/asl.208.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Brands, S., S. Herrera, D. San-Martin, and J. M. Gutierrez, 2011a: Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res., 48, 145161, doi:10.3354/cr00995.

    • Search Google Scholar
    • Export Citation
  • Brands, S., J. J. Taboada, A. S. Cofino, T. Sauter, and C. Schneider, 2011b: Statistical downscaling of daily temperatures in the NW Iberian Peninsula from global climate models: Validation and future scenarios. Climate Res., 48, 163176, doi:10.3354/cr00906.

    • Search Google Scholar
    • Export Citation
  • Buishand, T., M. Shabalova, and T. Brandsma, 2004: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Climate, 17, 18161827.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., and B. Hewitson, 2005: Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Res., 28, 95107.

    • Search Google Scholar
    • Export Citation
  • Charles, S. P., M. A. Bari, A. Kitsios, and B. C. Bates, 2007: Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment, Western Australia. Int. J. Climatol., 27, 16731690, doi: 10.1002/joc.1508.

    • Search Google Scholar
    • Export Citation
  • Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008a: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend. J. Climate, 21, 26112633.

    • Search Google Scholar
    • Export Citation
  • Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008b: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: Pacific pan-decadal variability. J. Climate, 21, 26342650.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137A, 553597, doi: 10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Elliott, W., and D. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72, 15071520.

    • Search Google Scholar
    • Export Citation
  • Eum, H.-I., P. Gachon, R. Laprise, and T. Ouarda, 2011: Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme. Climate Dyn., doi:10.1007/s00382-011-1149-3, in press.

    • Search Google Scholar
    • Export Citation
  • Fernández, J., J. P. Montávez, J. Saénz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112, D04101, doi:10.1029/2005JD006649.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi: 10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and R. Ghassern, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., C. Achberger, R. Benestad, D. Chen, and E. Forland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Res., 29, 255268.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., L. Fita, J. Fernandez, and J. M. Gutierrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    • Search Google Scholar
    • Export Citation
  • Jones, C., F. Giorgi, and G. Asrar, 2011: The Coordinated Regional Downscaling Experiment: CORDEX an international downscaling link to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 34–40.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kjellstrom, E., F. Boberg, M. Castro, J. H. Christensen, G. Nikulin, and E. Sanchez, 2010: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res., 44, 135150, doi:10.3354/cr00932.

    • Search Google Scholar
    • Export Citation
  • Koukidis, E. N., and A. A. Berg, 2009: Sensitivity of the Statistical DownScaling Model (SDSM) to reanalysis products. Atmos. Ocean, 47, 118, doi:10.3137/AO924.2009.

    • Search Google Scholar
    • Export Citation
  • Kristjansson, J., A. Staple, J. Kristiansen, and E. Kaas, 2002: A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett., 29, 2107, doi: 10.1029/2002GL015646.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666, doi:10.1016/j.jcp.2006.10.024.

  • Mao, J., X. Shi, L. Ma, D. P. Kaiser, Q. Li, and P. E. Thornton, 2010: Assessment of reanalysis daily extreme temperatures with China’s homogenized historical dataset during 1979–2001 using probability density functions. J. Climate, 23, 66056623.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maxino, C. C., B. J. McAvaney, A. J. Pitman, and S. E. Perkins, 2008: Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int. J. Climatol., 28, 10971112, doi:10.1002/joc.1612.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G., A. Arking, and M. Pook, 2009: Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data. Theor. Appl. Climatol., 98, 351359, doi:10.1007/s00704-009-0117-x.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and S. E. Perkins, 2009: Global and regional comparison of daily 2-m and 1000-hPa maximum and minimum temperatures in three global reanalyses. J. Climate, 22, 46674681.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Ross, R., and W. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 16021612.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sauter, T., and V. Venema, 2011: Natural three-dimensional predictor domains for statistical precipitation downscaling. J. Climate, 24, 61326145.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2011: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24, 26202627.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873.

  • Trenberth, K., and L. Smith, 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864875.

  • Trenberth, K., D. Stepaniak, J. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the Tropics. J. Climate, 14, 14991510.

  • Trenberth, K., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi: 10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131B, 29613012.

  • Wang, J., D. Carlson, D. Parsons, T. Hock, D. Lauritsen, H. Cole, K. Beierle, and E. Chamberlain, 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30, 1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wilby, R., and T. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21, 530548.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Zahn, M., and H. von Storch, 2010: Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312, doi:10.1038/nature09388.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1198 617 27
PDF Downloads 594 154 19