The Global Character of the Flux of Downward Longwave Radiation

Graeme L. Stephens * Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
,
Martin Wild Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Martin Wild in
Current site
Google Scholar
PubMed
Close
,
Paul W. Stackhouse Jr. NASA Langley Research Center, Hampton, Virginia

Search for other papers by Paul W. Stackhouse Jr. in
Current site
Google Scholar
PubMed
Close
,
Tristan L’Ecuyer Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Tristan L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
, and
David S. Henderson Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by David S. Henderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W m−2 with an error of approximately ±10 W m−2 that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W m−2 and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W m−2 for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

Corresponding author address: Graeme L. Stephens, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: stephens@atmos.colostate.edu

Abstract

Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W m−2 with an error of approximately ±10 W m−2 that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W m−2 and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W m−2 for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

Corresponding author address: Graeme L. Stephens, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: stephens@atmos.colostate.edu
Save
  • Angstrom, A., 1918: A study of the radiation of the atmosphere. Smithson. Misc. Collect., 65, 1159.

  • Arrenhius, S., 1896: On the influence of carbonic acid in the air on the temperature of the ground. Philos. Mag., 41, 237276.

  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system version 4. GEOS Tech. Rep. Series on Global Modeling and Data Assimilation 104606, 26 pp.

  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 58, 389418.

  • Brutsaert, W., 1975: On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11, 742744.

  • Callendar, G. S., 1938: The artificial production of CO2 and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223237.

  • Dilley, A. C., and D. M. O’Brien, 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124A, 13911401.

    • Search Google Scholar
    • Export Citation
  • Elsasser, W. M., 1942: Heat Transfer by Infrared Radiation in the Atmosphere. Harvard Meteorological Studies Series, Vol. 6, Harvard University Press, 87 pp.

  • Fu, Q., K.-N. Liou, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 2799.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 2001: Clear-sky longwave irradiance at the earth’s surface—Evaluation of climate models. J. Climate, 14, 16471670.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., D. M. O’Brien, M. R. Dix, J. M. Murphy, G. L. Stephens, and M. Wild, 1999: Surface radiation fluxes in transient climate simulations. Global Planet. Change, 20, 3355.

    • Search Google Scholar
    • Export Citation
  • Gilgen, H., M. Wild, and A. Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from Global Energy Balance Archive data. J. Climate, 11, 20422061.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., W. L. Darnell, and A. C. Wilber, 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor., 31, 13611367.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., D. P. Kratz, P. W. Stackhouse, A. C. Wilber, T. Zhang, and V. E. Sothcott, 2010: Improvement of surface longwave flux algorithms used in CERES processing. J. Appl. Meteor. Climatol., 49, 15791589.

    • Search Google Scholar
    • Export Citation
  • Haladay, T., and G. Stephens, 2009: Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. J. Geophys. Res., 114, D00A25, doi:10.1029/2008JD010675.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475.

  • Idso, S. B., and R. D. Jackson, 1969: Thermal radiation from the atmosphere. J. Geophys. Res., 74, 53975403.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kasting, J. F., 1989: Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472494.

  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208.

  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008: Impact of clouds on the atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288299.

  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., D22306, 113, doi:10.1029/2007JD009775.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 4374–4400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., H. Gilgen, and M. Wild, 1989: Global energy balance archive GEBA, World Climate Program project A7—Water, report 1: Introduction. Zuercher Geografische Schriften 34, Verlag der Fachvereine, Zuerich, 62 pp.

  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): A new precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Paltridge, G. W., A. Arking, and M. Pook, 2009: Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis. Theor. Appl. Climatol., 98, 351359, doi:10.1007/s00704-009-0117-x.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 2008: The climatological record of clear-sky longwave radiation at the Earth’s surface: Evidence for water vapour feedback? Int. J. Remote Sens., 29, 52475263.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Bengstssonn, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12, 30043032.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. D., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Santer, B. D., and Coauthors, 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15 24815 253, doi:10.1073/pnas.0702872104.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and A. Sinha, 1991: Sensitivity of the earths’s climate to height dependent changes in the water vapor mixing ratio. Nature, 354, 382382.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 10, 841844.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-Year Dataset. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Stephens, G. L., 1999: Radiative effects of clouds and water vapor. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 71–90.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., and T. J. Greenwald, 1991: The earth’s radiation budget and its relation to atmospheric hydrology. 1. Observations of the clear sky greenhouse effect. J. Geophys. Res., 96, 15 31115 324.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Y. Hu, 2010: Are climate-related changes to the character of global precipitation predictable? Environ. Res. Lett., 5, 025209, doi:10.1088/1748-9326/5/2/025209.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Swinbank, W. C., 1963: Long-wave radiation from clear skies. Quart. J. Roy. Meteor. Soc., 89, 339348.

  • Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17 85317 873.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15, 333352.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wentz, F. J., cited 2006; Version-6 over-ocean product of Remote Sensing Systems. [Available online at http://www.remss.com.]

  • Wilber, A. C., D. P. Kratz, and S. K. Gupta, 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Rep. L-17861, NAS 1.60:209362, NASA/TP-1999-209362, 35 pp.

  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC AR4/CMIP3 models. Tellus, 60A, 932945.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and B. Liepert, 2010: The earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett., 5, 025203, doi:10.1088/1748-9326/5/2/025203.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, and E. Roeckner, 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 13091324.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J. J. Morcrette, 1998: The disposition of radiative energy in the global climate system: GCM versus observational estimates. Climate Dyn., 14, 853869.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, J. J. Morcrette, and A. Slingo, 2001: Evaluation of downward longwave radiation in general circulation models. J. Climate, 14, 32273239.

    • Search Google Scholar
    • Export Citation
  • Wild, M., J. Grieser, and C. Schär, 2008: Combined surface solar brightening and greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1636 456 65
PDF Downloads 1232 340 36