Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4

David M. Lawrence Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Andrew G. Slater Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Andrew G. Slater in
Current site
Google Scholar
PubMed
Close
, and
Sean C. Swenson Earth System Laboratory, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sean C. Swenson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The representation of permafrost and seasonally frozen ground and their projected twenty-first century trends is assessed in the Community Climate System Model, version 4 (CCSM4) and the Community Land Model version 4 (CLM4). The combined impact of advances in CLM and a better Arctic climate simulation, especially for air temperature, improve the permafrost simulation in CCSM4 compared to CCSM3. Present-day continuous plus discontinuous permafrost extent is comparable to that observed [12.5 × 106 versus (11.8–14.6) × 106 km2], but active-layer thickness (ALT) is generally too thick and deep ground (>15 m) temperatures are too warm in CCSM4. Present-day seasonally frozen ground area is well simulated (47.5 × 106 versus 48.1 × 106 km2). ALT and deep ground temperatures are much better simulated in offline CLM4 (i.e., forced with observed climate), which indicates that the remaining climate biases, particularly excessive high-latitude snowfall biases, degrade the CCSM4 permafrost simulation.

Near-surface permafrost (NSP) and seasonally frozen ground (SFG) area are projected to decline substantially during the twenty-first century [representative concentration projections (RCPs); RCP8.5: NSP by 9.0 × 106 km2, 72%, SFG by 7.1 × 106, 15%; RCP2.6: NSP by 4.1 × 106, 33%, SFG by 2.1 × 106, 4%]. The permafrost degradation rate is slower (2000–50) than in CCSM3 by ~35% because of the improved soil physics. Under the low RCP2.6 emissions pathway, permafrost state stabilizes by 2100, suggesting that permafrost related feedbacks could be minimized if greenhouse emissions could be reduced. The trajectory of permafrost degradation is affected by CCSM4 climate biases. In simulations with this climate bias ameliorated, permafrost degradation in RCP8.5 is lower by ~29%. Further reductions of Arctic climate biases will increase the reliability of permafrost projections and feedback studies in earth system models.

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: dlawren@ucar.edu

This article is included in the CCSM4 Special Collection special collection.

Abstract

The representation of permafrost and seasonally frozen ground and their projected twenty-first century trends is assessed in the Community Climate System Model, version 4 (CCSM4) and the Community Land Model version 4 (CLM4). The combined impact of advances in CLM and a better Arctic climate simulation, especially for air temperature, improve the permafrost simulation in CCSM4 compared to CCSM3. Present-day continuous plus discontinuous permafrost extent is comparable to that observed [12.5 × 106 versus (11.8–14.6) × 106 km2], but active-layer thickness (ALT) is generally too thick and deep ground (>15 m) temperatures are too warm in CCSM4. Present-day seasonally frozen ground area is well simulated (47.5 × 106 versus 48.1 × 106 km2). ALT and deep ground temperatures are much better simulated in offline CLM4 (i.e., forced with observed climate), which indicates that the remaining climate biases, particularly excessive high-latitude snowfall biases, degrade the CCSM4 permafrost simulation.

Near-surface permafrost (NSP) and seasonally frozen ground (SFG) area are projected to decline substantially during the twenty-first century [representative concentration projections (RCPs); RCP8.5: NSP by 9.0 × 106 km2, 72%, SFG by 7.1 × 106, 15%; RCP2.6: NSP by 4.1 × 106, 33%, SFG by 2.1 × 106, 4%]. The permafrost degradation rate is slower (2000–50) than in CCSM3 by ~35% because of the improved soil physics. Under the low RCP2.6 emissions pathway, permafrost state stabilizes by 2100, suggesting that permafrost related feedbacks could be minimized if greenhouse emissions could be reduced. The trajectory of permafrost degradation is affected by CCSM4 climate biases. In simulations with this climate bias ameliorated, permafrost degradation in RCP8.5 is lower by ~29%. Further reductions of Arctic climate biases will increase the reliability of permafrost projections and feedback studies in earth system models.

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: dlawren@ucar.edu

This article is included in the CCSM4 Special Collection special collection.

Save
  • Åkerman, H. J., and M. Johansson, 2008: Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost Periglacial Processes, 19, 279292.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity in the Community Climate System Model Version 4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Black, T. A., and Coauthors, 2000: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett., 27, 12711274.

    • Search Google Scholar
    • Export Citation
  • Brown, J., O. J. Ferrians, J. A. Heginbottom, and E. S. Melnikov, 1998: International Permafrost Association circum-Arctic map of permafrost and ground-ice conditions. U.S. Geological Survey Circum-Pacific Map Series Map CP-45, 1 pp. [Available online at www.nsidc.org/fgdc/maps/ipa_browse.html.]

    • Search Google Scholar
    • Export Citation
  • Brown, J., K. M. Hinkel, and F. E. Nelson, 2000: The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results. Polar Geogr., 24, 165258.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114.

    • Search Google Scholar
    • Export Citation
  • Camill, P., 2005: Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change, 68, 135152.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609632.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Dankers, R., E. J. Burke, and J. Price, 2011: Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme. The Cryopshere Discuss., 5, 12631309, doi:10.5194/tcd-5-1263-2011.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., W. L. Chapman, J. E. Kay, B. Medeiros, M. D. Shupe, S. Vavrus, and J. Walsh, 2012: A characterization of the present-day Arctic atmosphere in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, E. S., and Coauthors, 2006: Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol., 12, 731750.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.

    • Search Google Scholar
    • Export Citation
  • Froese, D. G., J. A. Westgate, A. V. Reyes, R. J. Enkin, and S. J. Preece, 2008: Ancient permafrost and a future, warmer Arctic. Science, 321, 1648, doi:10.1126/science.1157525.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Goulden, M. L., and Coauthors, 1998: Sensitivity of boreal forest carbon balance to soil thaw. Science, 279, 214217.

  • Grosse, G., V. Romanovsky, T. Jorgenson, K. W. Anthony, J. Brown, and P. P. Overduin, 2011: Vulnerability and feedbacks of permafrost to climate change. Eos, Trans. Amer. Geophys. Union, 92, 73, doi:10.1029/2011EO090001.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Kane, D. L., L. D. Hinzman, R. E. Gieck, J. P. McNamara, E. Youcha, and J. A. Oatley, 2008: Contrasting extreme runoff events in areas of continuous permafrost, Arctic Alaska. Hydrol. Res., 39, 287298.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., K. C. McDonald, and M. Zhao, 2006: Spring thaw and its effect on terrestrial vegetation productivity in the western Arctic observed from satellite microwave and optical remote sensing. Earth Interact., 10. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Koven, C., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2009: On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett., 36, L21501, doi:10.1029/2009GL040150.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2005: A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett., 32, L24401, doi:10.1029/2005GL025080.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145160, doi:10.1007/s00382-007-0278-1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky, 2008a: The sensitivity of a model projection of near-surface permafrost degradation to soil column depth and inclusion of soil organic matter. J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, R. A. Tomas, M. M. Holland, and C. Deser, 2008b: Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35, L11506, doi:10.1029/2008GL033985.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260.

    • Search Google Scholar
    • Export Citation
  • Mastepanov, M., C. Sigsgaard, E. J. Dlugokencky, S. Houweling, L. Ström, M. P. Tamstorf, and T. R. Christensen, 2008: Large tundra methane burst during onset of freezing. Nature, 456, 628630, doi:10.1038/nature07464.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, cited 2009a: Terrestrial precipitation: 1900-2008 gridded monthly time series, version 2.01. [Available online at http://climate.geog.udel.edu/~climate/html_pages/archive.html.]

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, cited 2009b: Terrestrial air temperature: 1900-2008 gridded monthly time series, version 2.01. [Available online at http://climate.geog.udel.edu/~climate/html_pages/archive.html.]

    • Search Google Scholar
    • Export Citation
  • McDonald, K. C., J. S. Kimball, E. Njoku, R. Zimmermann, and M. Zhao, 2009: Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact., 8. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., F. S. Chapin, J. E. Walsh, and C. Wirth, 2006: Integrated regional changes in Arctic climate feedbacks: Implications for the Global Climate System. Annu. Rev. Environ. Resour., 31, 6191, doi:10.1146/annurev.energy.31.020105.100253.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, J. M. Arblaster, H. Teng, C. Tebaldi, W. G. Strand, and J. B. White, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756.

  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698702.

    • Search Google Scholar
    • Export Citation
  • Oberman, N., 2008: Contemporary permafrost degradation of Northern European Russia. Proc. Ninth Int. Conf. on Permafrost, Fairbanks, AK, University of Alaska Fairbanks, 1305–1310.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, J. A., V. E. Romanovsky, J. W. Harden, and A. D. McGuire, 2009: The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci., 174, 646651.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note TN-461+STR, 174 pp.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model. NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2002: Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975.

    • Search Google Scholar
    • Export Citation
  • Quinton, W. L., M. Hayashi, and L. E. Chasmer, 2011: Permafrost-thaw-induced land-cover change in the Canadian subarctic: Implications for water resources. Hydrol. Processes, 25, 152158, doi:10.1002/hyp.7894.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., K. C. McDonald, S. Frolking, R. B. Lammers, M. Fahnestock, J. S. Kimball, and C. J. Vorosmarty, 2005: Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer. J. Hydrol., 312, 294311, doi:10.1016/j.jhydrol.2004.12.018.

    • Search Google Scholar
    • Export Citation
  • Reifen, C., and R. Toumi, 2009: Climate projections: Past performance no guarantee of future skill? Geophys. Res. Lett., 36, L13704, doi:10.1029/2009GL038082.

    • Search Google Scholar
    • Export Citation
  • Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. Mahowald, and P. Hess, 2011: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 19251953.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., P. Kuhry, and K. Dethloff, 2008: Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM. Geophys. Res. Lett., 35, L13709, doi:10.1029/2008GL034052.

    • Search Google Scholar
    • Export Citation
  • Riseborough, D., N. Shiklomanov, B. Etzelmuller, S. Gruber, and S. Marchenko, 2008: Recent advances in permafrost modelling. Permafrost Periglacial Processes, 19, 137156, doi:10.1002/ppp.615.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., and T. E. Osterkamp, 1997: Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglacial Processes, 8, 122.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., S. L. Smith, and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost Periglacial Processes, 21, 106116, doi:10.1002/ppp.689.

    • Search Google Scholar
    • Export Citation
  • Rowland, J. C., and Coauthors, 2010: Arctic landscapes in transition: Responses to thawing permafrost. Eos, Trans. Amer. Geophys. Union, 91, 229, doi:10.1029/2010EO260001.

    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701714.

    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556559, doi:10.1038/nature08031.

    • Search Google Scholar
    • Export Citation
  • Smith, L. C., Y. Sheng, G. M. MacDonald, and L. D. Hinzman, 2005: Disappearing Arctic lakes. Science, 308, 1429.

  • Tape, K., M. Sturm, and C. Racine, 2006: The evidence for shrub expansion in Northern Alaska and the pan-Arctic. Global Change Biol., 12, 686702.

    • Search Google Scholar
    • Export Citation
  • Thibault, S., and S. Payette, 2009: Recent permafrost degradation in bogs of the James Bay area, northern Quebec, Canada. Permafrost Periglacial Processes, 20, 383389.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 56735687.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey, 2012: Twenty-first-century Arctic climate change in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., S. Marchenko, J. Talbot, C. Treat, and S. Frolking, 2011: Soil temperature response to 21st century global warming: The role of and some implications for peat carbon in thawing permafrost soils in North America. Earth Syst. Dyn. Discuss., 2, 161210, doi:10.5194/esdd-2-161-2011.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. A. Heginbottom, R. G. Barry, and J. Brown, 2000: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr., 24, 126131.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., R. Barry, K. Knowles, F. Ling, and R. Armstrong, 2003: Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. Proc. Eighth Int. Conf. on Permafrost, Zurich, Switzerland, Swiss Federal Institute of Technology, 1289–1294.

    • Search Google Scholar
    • Export Citation
  • Zimov, S. A., E. A. G. Schuur, and F. S. Chapin, 2006: Permafrost and the global carbon budget. Science, 312, 16121613.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1950 721 54
PDF Downloads 1075 294 30