A Global Atmospheric Analysis Dataset Downscaled from the NCEP–DOE Reanalysis

Jung-Eun Kim Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, and NOAA/Earth System Research Laboratory, Boulder, Colorado, and Department of Atmospheric Sciences, Global Environment Laboratory, Yonsei University, Seoul, South Korea

Search for other papers by Jung-Eun Kim in
Current site
Google Scholar
PubMed
Close
and
Song-You Hong Department of Atmospheric Sciences, Global Environment Laboratory, Yonsei University, Seoul, South Korea

Search for other papers by Song-You Hong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global atmospheric analysis dataset is constructed via a spectral nudging technique. The 6-hourly National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis from January 1979 to February 2011 is utilized to force large-scale information, whereas a higher-resolution structure is resolved by a global model with improved physics. The horizontal resolution of the downscaled data is about 100 km, twice that of the NCEP–DOE reanalysis.

A comparison of the 31-yr downscaled data with reanalysis data and observations reveals that the downscaled precipitation climatology is improved by correcting inherent biases in the lower-resolution reanalysis, and large-scale patterns are preserved. In addition, it is found that global downscaling is an efficient way to generate high-quality analysis data due to the use of a higher-resolution model with improved physics. The uniqueness of the obtained data lies in the fact that an undesirable decadal trend in the analysis due to a change in the amount of observations used in reanalysis is avoided. As such, a downscaled dataset may be used to investigate changes in the hydrological cycle and related mechanisms.

Corresponding author address: Song-You Hong, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, South Korea. E-mail: shong@yonsei.ac.kr

Abstract

A global atmospheric analysis dataset is constructed via a spectral nudging technique. The 6-hourly National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis from January 1979 to February 2011 is utilized to force large-scale information, whereas a higher-resolution structure is resolved by a global model with improved physics. The horizontal resolution of the downscaled data is about 100 km, twice that of the NCEP–DOE reanalysis.

A comparison of the 31-yr downscaled data with reanalysis data and observations reveals that the downscaled precipitation climatology is improved by correcting inherent biases in the lower-resolution reanalysis, and large-scale patterns are preserved. In addition, it is found that global downscaling is an efficient way to generate high-quality analysis data due to the use of a higher-resolution model with improved physics. The uniqueness of the obtained data lies in the fact that an undesirable decadal trend in the analysis due to a change in the amount of observations used in reanalysis is avoided. As such, a downscaled dataset may be used to investigate changes in the hydrological cycle and related mechanisms.

Corresponding author address: Song-You Hong, Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, South Korea. E-mail: shong@yonsei.ac.kr
Save
  • Alpert, J. C., M. Kanamitus, P. M. Calpan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

    • Search Google Scholar
    • Export Citation
  • Byun, Y.-H., and S.-Y. Hong, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and impact on seasonal prediction. Mon. Wea. Rev., 135, 21352154.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and E. Kalnay, 2005: Can reanalysis have anthropogenic climate trends without model forcing? J. Climate, 18, 18441849.

  • Campana, K. A., Y.-T. Hou, K. E. Mitchell, S.-K. Yang, and R. Cullather, 1994: Improved diagnostic cloud parameterization in NCEP’s global model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640.

  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and K.-T. Lee, 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772.

  • Chou, M.-D., and K.-T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 12031208.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech. Memo NASA/TM-1999-104606, Vol. 15, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and K.-T. Lee, 2005: A parameterization of the effective layer emission for infrared radiation calculations. J. Atmos. Sci., 62, 531541.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., K.-T. Lee, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159169.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah and surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 14751488.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 26212639.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lower tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523531.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced wave drag parameterization in a general circulation model. Asia-Pac. J. Atmos. Sci., 46, 110.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamaru, H., and M. Kanamitsu, 2007: Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334350.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002a: NCEP dynamical seasonal forecast system. Bull. Amer. Meteor. Soc., 83, 10191037.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, E.-J., and S.-Y. Hong, 2010: Impact of air–sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity-wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38, 185202.

    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC Medium-Range Forecast Model. NMC Office Note 409, 40 pp. [Available from NCEP/EMC 5200 Auth Road, Camp Springs, MD 20746.]

    • Search Google Scholar
    • Export Citation
  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151168.

    • Search Google Scholar
    • Export Citation
  • Park, H., S.-Y. Hong, and H. B. Cheong, 2008: Implementing a double Fourier series dynamic core into a global atmospheric model. Extended Abstracts, 20th Conf. on Climate Variability and Change, New Orleans, LA, Amer. Meteor. Soc., 15.B2. [Available online at http://ams.confex.com/ams/88Annual/techprogram/paper_134805.htm.]

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2011: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24, 26202627.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353361.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1984: The sensitivity of time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. Workshop on Convection in Large-Scale Numerical Models, Reading, United Kingdom, ECMWF, 297–316.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and V. M. Mehta, 2008: Decadal variability of the Indo-Pacific warm pool and its association with atmospheric and oceanic variability in the NCEP–NCAR and SODA reanalyses. J. Climate, 21, 55455565.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yhang, Y.-B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963979.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., and M. Kanamitsu, 2008: Dynamical global downscaling of global reanalysis. Mon. Wea. Rev., 136, 29832998.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 82 8
PDF Downloads 112 51 7