• Ammann, C. M., , G. A. Meehl, , W. M. Washington, , C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , K. W. Dixon, , T. L. Delworth, , T. R. Knutson, , R. J. Stouffer, , and F. Zeng, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, doi:10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., , N. J. White, , and J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 7477, doi:10.1038/nature04237.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , S. Tett, , and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 6181.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , A. Hu, , G. A. Meehl, , W. M. Washington, , and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled general circulation model: Unforced variations versus forced changes. J. Climate, 18, 32703293.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and K. W. Dixon, 2006: Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett., 33, L02606, doi:10.1029/2005GL024980.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., , T. L. Delworth, , M. J. Spelman, , and R. J. Stouffer, 1999: The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Lett., 26, 27492752.

    • Search Google Scholar
    • Export Citation
  • Gao, C., , A. Robock, , and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , A. J. Weaver, , F. W. Zwiers, , and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31, L12217, doi:10.1029/2004GL020044.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., , K. AchutaRao, , J. M. Gregory, , B. D. Santer, , K. E. Taylor, , and T. M. L. Wigley, 2006: Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett., 33, L17702, doi:10.1029/2006GL026771.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. Senior, , H. Banks, , J. Gregory, , T. Johns, , and J. Mitchell, 2000: The simulation of SST, sea ice extent and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-E., , Q. Li, , and M. A. Giorgetta, 2007: Volcanic effects on climate: Revisiting the mechanisms. Atmos. Chem. Phys., 7, 45034511.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., , J. C. Moore, , and S. Jevrejeva, 2007: Observational evidence for volcanic impact on sea level and the global water cycle. Proc. Natl. Acad. Sci. USA, 104, 19 73019 734, doi:10.1073/pnas.0705825104.

    • Search Google Scholar
    • Export Citation
  • Jones, A., , D. Roberts, , and M. Woodage, 1999: The indirect effects of anthropogenic sulphate aerosol simulated using a climate model with an interactive sulphur cycle. Met Office Hadley Centre Tech. Note 14, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, G. S., , J. M. Gregory, , P. A. Stott, , S. F. B. Tett, , and R. B. Thorpe, 2005: An AOGCM simulation of the response to a volcanic super-eruption. Climate Dyn., 25, 725738, doi:10.1007/s00382-005-0066-8.

    • Search Google Scholar
    • Export Citation
  • Lean, J., , J. Beer, , and R. Bradley, 1995: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett., 22, 31953198.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818.

    • Search Google Scholar
    • Export Citation
  • Pope, V., , M. Galiani, , P. Rowntree, , and R. Stratton, 2000: The impact of new physical parametrisations in the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 123146.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., , R. H. Bourke, , and F. A. McLaughlin, 2002: The role of the Beaufort gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett., 29, 2100, doi:10.1029/2002GL015847.

    • Search Google Scholar
    • Export Citation
  • Sato, M., , J. Hansen, , M. McCormick, , and J. Pollack, 1993: Stratospheric aerosol optical depth. J. Geophys. Res., 98, 22 98722 994.

  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp. [Available online at http://www.ipcc.ch/ipccreports/ar4-wg1.htm.]

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , K. Hamilton, , R. J. Stouffer, , A. Robock, , V. Ramaswamy, , B. Santer, , and H.-E. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , T. L. Delworth, , V. Ramaswamy, , R. J. Stouffer, , A. Wittenberg, , and F. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114, D16104, doi:10.1029/2008JD011673.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , S. F. B. Tett, , G. S. Jones, , M. R. Allen, , J. F. B. Mitchell, , and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290, 21332137, doi:10.1126/science.290.5499.2133.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. A., , C. Timmreck, , M. A. Giorgetta, , H.-F. Graf, , and G. Stenchikov, 2009: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 1: Sensitivity to the modes of atmospheric circulation and boundary conditions. Atmos. Chem. Phys., 9, 757769.

    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., , J. M. Gregory, , T. C. Johns, , R. A. Wood, , and J. F. B. Mitchell, 2001: Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14, 31023116.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 6
PDF Downloads 49 49 8

Mechanisms Linking Volcanic Aerosols to the Atlantic Meridional Overturning Circulation

View More View Less
  • 1 BADC, NCAS, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
  • | 2 NCAS-Climate, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 3 National Centre for Earth Observation, University of Reading, Reading, United Kingdom
  • | 4 NCAS-Climate, Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.

Corresponding author address: Alan M. Iwi, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom. E-mail: alan.iwi@stfc.ac.uk

Abstract

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.

Corresponding author address: Alan M. Iwi, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom. E-mail: alan.iwi@stfc.ac.uk
Save