• Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N. C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39, 3538.

  • Betts, A. K., , and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., , and A. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451460.

  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701.

  • Chou, C., , J. D. Neelin, , C.-A. Chen, , and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , J. Lu, , and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , C. M. Johanson, , J. M. Wallace, , and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., , L. Li, , and H. Le Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 39934013.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hu, Y., , and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., , and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725.

  • Johnson, N. C., , and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , G. A. Vecchi, , and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288299.

  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Nino versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • Muller, C. J., , and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, doi:10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , P. A. O’Gorman, , and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., , N. Ishizaki, , and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Watanabe, M., , and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369; Corrigendum, 127, 733–734.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and F.-F. Jin, 2004: Dynamical prototype of the Arctic Oscillation as revealed by a neutral singular vector. J. Climate, 17, 21192138.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , L. Ricciardulli, , K. Hilburn, , and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 231 47
PDF Downloads 202 202 43

Mechanisms for Tropical Tropospheric Circulation Change in Response to Global Warming

View More View Less
  • 1 Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 Department of Meteorology, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 3 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The annual-mean tropospheric circulation change in global warming is studied by comparing the response of an atmospheric general circulation model (GCM) to a spatial-uniform sea surface temperature (SST) increase (SUSI) with the response of a coupled ocean–atmosphere GCM to increased greenhouse gas concentrations following the A1B scenario. In both simulations, tropospheric warming follows the moist adiabat in the tropics, and static stability increases globally in response to SST warming. A diagnostic framework is developed based on a linear baroclinic model (LBM) of the atmosphere. The mean advection of stratification change (MASC) by climatological vertical motion, often neglected in interannual variability, is an important thermodynamic term for global warming. Once MASC effect is included, LBM shows skills in reproducing GCM results by prescribing latent heating diagnosed from the GCMs.

MASC acts to slow down the tropical circulation. This is most clear in the SUSI run where the Walker circulation slows down over the Pacific without any change in SST gradient. MASC is used to decelerate the Hadley circulation, but spatial patterns of SST warming play an important role. Specifically, the SST warming is greater in the Northern than Southern Hemisphere, an interhemispheric asymmetry that decelerates the Hadley cell north, but accelerates it south of the equator. The MASC and SST-pattern effects are on the same order of magnitude in our LBM simulations. The former is presumably comparable across GCMs, while SST warming patterns show variations among models in both shape and magnitude. Uncertainties in SST patterns account for intermodel variability in Hadley circulation response to global warming (especially on and south of the equator).

Corresponding author address: Jian Ma, Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, HI 96822. E-mail: jianma@hawaii.edu

International Pacific Research Center Publication Number 830 and School of Ocean and Earth Science and Technology Publication Number 8519.

Abstract

The annual-mean tropospheric circulation change in global warming is studied by comparing the response of an atmospheric general circulation model (GCM) to a spatial-uniform sea surface temperature (SST) increase (SUSI) with the response of a coupled ocean–atmosphere GCM to increased greenhouse gas concentrations following the A1B scenario. In both simulations, tropospheric warming follows the moist adiabat in the tropics, and static stability increases globally in response to SST warming. A diagnostic framework is developed based on a linear baroclinic model (LBM) of the atmosphere. The mean advection of stratification change (MASC) by climatological vertical motion, often neglected in interannual variability, is an important thermodynamic term for global warming. Once MASC effect is included, LBM shows skills in reproducing GCM results by prescribing latent heating diagnosed from the GCMs.

MASC acts to slow down the tropical circulation. This is most clear in the SUSI run where the Walker circulation slows down over the Pacific without any change in SST gradient. MASC is used to decelerate the Hadley circulation, but spatial patterns of SST warming play an important role. Specifically, the SST warming is greater in the Northern than Southern Hemisphere, an interhemispheric asymmetry that decelerates the Hadley cell north, but accelerates it south of the equator. The MASC and SST-pattern effects are on the same order of magnitude in our LBM simulations. The former is presumably comparable across GCMs, while SST warming patterns show variations among models in both shape and magnitude. Uncertainties in SST patterns account for intermodel variability in Hadley circulation response to global warming (especially on and south of the equator).

Corresponding author address: Jian Ma, Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, HI 96822. E-mail: jianma@hawaii.edu

International Pacific Research Center Publication Number 830 and School of Ocean and Earth Science and Technology Publication Number 8519.

Save