• Ådlandsvik, B., 2008: Marine downscaling of a future climate scenario for the North Sea. Tellus, 60, 451458.

  • Ådlandsvik, B., , and M. Bentsen, 2007: Downscaling a twentieth century global climate simulation to the North Sea. Ocean Dyn., 57, 453466, doi:10.1007/s10236-007-0125-2.

    • Search Google Scholar
    • Export Citation
  • Auad, G., , A. J. Miller, , and E. Di Lorenzo, 2006: Long-term forecast of oceanic conditions off California and their biological implications. J. Geophys. Res., 111, C09008, doi:10.1029/2005JC003219.

    • Search Google Scholar
    • Export Citation
  • Booth, D. J., , W. F. Figueira, , M. A. Gregson, , L. Brown, , and G. Beretta, 2007: Occurrence of tropical fishes in temperate southeastern Australia: Role of the East Australian Current. Estuarine Coastal Shelf Sci., 72, 102114, doi:10.1016/j.ecss.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , G. Shi, , T. Cowan, , D. Bi, , and J. Ribbe, 2005: The response of the southern annular mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett., 32, L23706, doi:10.1029/2005GL024701.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , H.-N. Chin, , D. C. Bader, , and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., , J. Toole, , and J. Church, 1997: Transports across the Tasman Sea from WOCE repeat sections: The East Australian Current 1990–94. N. Z. J. Mar. Freshwater Res., 31, 469475.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., , and K. Bryan, 1984: A numerical model of the ventilated thermocline. J. Phys. Oceanogr., 14, 674687.

  • Dietze, H., , R. Matear, , and T. Moore, 2009: Nutrient supply to anticyclonic meso-scale eddies off Western Australia estimated with artificial tracers released in a circulation model. Deep-Sea Res., 56, 14401448.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802.

  • Emanuel, K., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • England, M. H., , and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , G. Meyers, , A. Pearce, , and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, doi:10.1029/2002JC001763.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , Y. Li, , and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, doi:10.1029/2004GL019947.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , M. J. McPhaden, , and T. Lee, 2010: Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys. Res. Lett., 37, L09606, doi:10.1029/2010GL042796.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , C. Böning, , A. Biastoch, , E. Behrens, , E. Weller, , and Y. Masumoto, 2011: The reversal of the multi-decadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res. Lett., 38, L11604, doi:10.1029/2011GL047291.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., , and K. R. Ridgway, 1985: The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses, and geostrophic flow. J. Phys. Oceanogr., 15, 481495.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Coauthors, 2010: The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 Climate System Model. CSIRO Tech. Rep. 50, 130 pp.

  • Griffies, S. M., , M. J. Harrison, , R. C. Pacanowski & , and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 337 pp.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579.

  • Hill, K. L., , S. R. Rintoul, , R. Coleman, , and K. R. Ridgway, 2008: Wind forced low frequency variability of the East Australia Current. Geophys. Res. Lett., 35, L08602, doi:10.1029/2007GL032912.

    • Search Google Scholar
    • Export Citation
  • Langlais, C., , B. Barnier, , J. M. Molines, , P. Fraunié, , D. Jacob, , and S. Kotlarski, 2009: Evaluation of a dynamically downscaled atmospheric reanalyse in the prospect of forcing long term simulations of the ocean circulation in the Gulf of Lions. Ocean Modell., 30, 270286.

    • Search Google Scholar
    • Export Citation
  • Lenanton, R. C., , N. Caputi, , M. Kangas, , and M. Craine, 2009: The ongoing influence of the Leeuwin Current on economically important fish and invertebrates off temperate Western Australia—Has it changed? J. Roy. Soc. West. Aust., 92, 111127.

    • Search Google Scholar
    • Export Citation
  • Mata, M., , M. Tomczak, , S. Wijffels, , and J. Church, 2000: East Australian Current volume transports at 30°S: Estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array. J. Geophys. Res., 105 (C12), 2850928526.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , S. R. Shetye, , and P. K. Kundu, 1986: Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia. J. Mar. Res., 44, 7192.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., 2006: Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emission scenarios. Climate Dyn., 27, 3968.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., , A. Schiller, , G. A. Griffin, , and G. B. Brassington, 2005: Ensemble data assimilation for an eddy-resolving ocean model. Quart. J. Roy. Meteor. Soc., 131, 33013311.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., , G. B. Brassington, , D. A. Griffin, , and A. Schiller, 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modell., 21, 4670.

    • Search Google Scholar
    • Export Citation
  • Poloczanska, E. S., and Coauthors, 2007: Climate change and Australian marine life. Oceanogr. Mar. Biol.: Annu. Rev., 45, 407478.

  • Poloczanska, E. S., , S. J. Hawkins, , A. J. Southward, , and M. T. Burrows, 2008: Modelling the response of populations of competing species to climate change. Ecology, 89, 31383149.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Ridgway, K. R., 2007: Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett., 34, L13613, doi:10.1029/2007GL030393.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , and J. S. Godfrey, 1997: Seasonal cycle of the East Australian Current. J. Geophys. Res., 102, 2292122936.

  • Ridgway, K. R., , and J. R. Dunn, 2003: Mesoscale structure of the mean East Australian Current system and its relationship with topography. Prog. Oceanogr., 56, 189222.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , and S. A. Condie, 2004: The 5500-km-long boundary flow off Western and southern Australia. J. Geophys. Res., 109, C04017, doi:10.1029/2003JC001921.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , R. C. Coleman, , R. J. Bailey, , and P. Sutton, 2008: Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry. J. Geophys. Res., 113, C08039, doi:10.1029/2007JC004664.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , J. Gilson, , R. Davis, , P. Sutton, , S. Wijffels, , and S. Riser, 2007: Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr., 37, 162173.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., 1983: A tritium box model of the North Atlantic thermocline. J. Phys. Oceanogr., 13, 12691274.

  • Schiller, A., , P. R. Oke, , G. Brassington, , M. Entel, , R. Fiedler, , D. A. Griffin, , and J. V. Mansbridge, 2008: Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr., 76, 334365.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , A. Santoso, , A. S. Taschetto, , C. C. Ummenhofer, , J. Trevena, , and M. H. England, 2009: Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Climate, 22, 30473078.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., , S. E. Wijffels, , R. Molcard, , and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, doi:10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Stock, C. A., and Coauthors, 2011: On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr., 88, 127, doi:10.1016/j.pocean.2010.09.001.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376.

    • Search Google Scholar
    • Export Citation
  • Wainwright, L., , G. Meyers, , S. Wijffels, , and L. Pigot, 2008: Change in the Indonesian Throughflow with the climatic shift of 1976/77. Geophys. Res. Lett., 35, L03604, doi:10.1029/2007GL031911.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 14
PDF Downloads 72 72 12

Marine Downscaling of a Future Climate Scenario for Australian Boundary Currents

View More View Less
  • 1 Centre for Australian Weather and Climate Research, and CSIRO Wealth from Oceans National Research Flagship, Floreat, Western Australia, Australia
  • | 2 Centre for Australian Weather and Climate Research, and CSIRO Wealth from Oceans National Research Flagship, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Ocean boundary currents are poorly represented in existing coupled climate models, partly because of their insufficient resolution to resolve narrow jets. Therefore, there is limited confidence in the simulated response of boundary currents to climate change by climate models. To address this issue, the eddy-resolving Ocean Forecasting Australia Model (OFAM) was used, forced with bias-corrected output in the 2060s under the Special Report on Emissions Scenarios (SRES) A1B from the CSIRO Mark version 3.5 (Mk3.5) climate model, to provide downscaled regional ocean projections. CSIRO Mk3.5 captures a number of robust changes that are common to most climate models that are consistent with observed changes, including the weakening of the equatorial Pacific zonal wind stress and the strengthening of the wind stress curl in the Southern Pacific, important for driving the boundary currents around Australia.

The 1990s climate is downscaled using air–sea fluxes from the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The current speed, seasonality, and volume transports of the Australian boundary currents show much greater fidelity to the observations in the downscaled model. Between the 1990s and the 2060s, the downscaling with the OFAM simulates a 15% reduction in the Leeuwin Current (LC) transport, a 20% decrease in the Indonesian Throughflow (ITF) transport, a 12% increase in the East Australian Current (EAC) core transport, and a 35% increase in the EAC extension. The projected changes by the downscaling model are consistent with observed trends over the past several decades and with changes in wind-driven circulation derived from Sverdrup dynamics. Although the direction of change projected from downscaling is usually in agreement with CSIRO Mk3.5, there are important regional details and differences that will impact the response of ecosystems to climate change.

Corresponding author address: Chaojiao Sun, CSIRO Marine and Atmospheric Research, Underwood Avenue, Floreat WA 6014, Australia. E-mail: chaojiao.sun@csiro.au

Abstract

Ocean boundary currents are poorly represented in existing coupled climate models, partly because of their insufficient resolution to resolve narrow jets. Therefore, there is limited confidence in the simulated response of boundary currents to climate change by climate models. To address this issue, the eddy-resolving Ocean Forecasting Australia Model (OFAM) was used, forced with bias-corrected output in the 2060s under the Special Report on Emissions Scenarios (SRES) A1B from the CSIRO Mark version 3.5 (Mk3.5) climate model, to provide downscaled regional ocean projections. CSIRO Mk3.5 captures a number of robust changes that are common to most climate models that are consistent with observed changes, including the weakening of the equatorial Pacific zonal wind stress and the strengthening of the wind stress curl in the Southern Pacific, important for driving the boundary currents around Australia.

The 1990s climate is downscaled using air–sea fluxes from the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The current speed, seasonality, and volume transports of the Australian boundary currents show much greater fidelity to the observations in the downscaled model. Between the 1990s and the 2060s, the downscaling with the OFAM simulates a 15% reduction in the Leeuwin Current (LC) transport, a 20% decrease in the Indonesian Throughflow (ITF) transport, a 12% increase in the East Australian Current (EAC) core transport, and a 35% increase in the EAC extension. The projected changes by the downscaling model are consistent with observed trends over the past several decades and with changes in wind-driven circulation derived from Sverdrup dynamics. Although the direction of change projected from downscaling is usually in agreement with CSIRO Mk3.5, there are important regional details and differences that will impact the response of ecosystems to climate change.

Corresponding author address: Chaojiao Sun, CSIRO Marine and Atmospheric Research, Underwood Avenue, Floreat WA 6014, Australia. E-mail: chaojiao.sun@csiro.au
Save