• Agudelo, P. A., , J. A. Curry, , C. D. Hoyos, , and P. J. Webster, 2006: Transition between suppressed and active phases of intraseasonal oscillations in the Indo-Pacific warm pool. J. Climate, 19, 55195530.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., , and Z. Kuang, 2008: A toy model of the instability in the equatorially trapped convectively coupled waves on the equatorial beta plane. J. Atmos. Sci., 65, 37363757.

    • Search Google Scholar
    • Export Citation
  • Anyamba, E., , E. Williams, , J. Susskind, , A. Fraser-Smith, , and M. Fullekrug, 2000: The manifestation of the Madden–Julian oscillation in global deep convection and in the Schumann resonance intensity. J. Atmos. Sci., 57, 10291044.

    • Search Google Scholar
    • Export Citation
  • Araligidad, N. M., , and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35, L04815, doi:10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., , and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the east Pacific ITCZ. J. Climate, 18, 43174328.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., , and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Blade, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Bond, N. A., , and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and Z. Kuang, 2010: Mechanisms of poleward-propagating, intraseasonal convective anomalies in cloud-system resolving models. J. Atmos. Sci., 67, 36733691.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitable water over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., 1970: Westward-propagating cloud patterns in the tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27, 133138.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J.-Y. Grandpeix, , J.-M. Piriou, , J.-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., , T. N. Palmer, , F. Molteni, , and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and P. E. Roundy, 2006: The relationship between tropical waves and tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., , and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian summer monsoon: An overview. The Global Monsoon System: Research and Forecast, C.-P. Chang, B. Wang, and N.-C. G. Lau, Eds., World Scientific, 19–61.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., , and R. M. Ponte, 1990: Exchange of momentum among atmosphere, ocean, and solid earth associated with the Madden–Julian oscillation. J. Geophys. Res., 95, 18 67918 686.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , G. N. Kiladis, , A. Denno, , and T. Rickenbach, 2008: Vertical mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., , A. J. Matthews, , and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Hendon, H. H., , B. Liebmann, , M. E. Newman, , J. D. Glick, , and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986.

    • Search Google Scholar
    • Export Citation
  • Hidayat, R., , and S. Kizu, 2010: Influence of the Madden–Julian oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 18161825.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099.

  • Hu, Q., , and D. A. Randall, 1995: Low-frequency oscillations in radiative–convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , T. Li, , and B. Wang, 2004: Structures and mechanisms of the northward-propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and J.-K.E. Schemm, 2000: The influence of intraseasonal variations on medium-range weather forecast over South America. Mon. Wea. Rev., 128, 486494.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , D. A. Randall, , and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayuba, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095.

  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834834.

  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column integrated moist static energy. J. Atmos. Sci., 68, 6174.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Langley, R. B., , R. W. King, , I. I. Shapiro, , R. D. Rosen, , and D. A. Salstein, 1981: Atmospheric angular momentum and the length of the day: A common fluctuation with a period of 50 days. Nature, 294, 730732.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: Aspects of the 40-50-day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1990: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci., 47, 14431462.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and H.-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., , and P. J. Webster, 2002: The boreal summer intraseasonal oscillation and the South Asian monsoon. J. Atmos. Sci., 59, 15931606.

    • Search Google Scholar
    • Export Citation
  • Leroy, A., , and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136, 36373657.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , H. Hendon, , and J. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401411.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , G. N. Kiladis, , C. S. Vera, , A. C. Saulo, , and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062.

  • Madden, R. A., 1986: Seasonal variations of the 40–50-day oscillation in the tropics. J. Atmos. Sci., 43, 31383158.

  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Majda, A., , and M. Schefter, 2001: Waves and instabilities for model tropical convective parameterizations. J. Atmos. Sci., 8, 896941.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and S. K. Esbensen, 2007: Satellite and buoy observations of boreal summer intraseasonal variability in the tropical northeast Pacific. Mon. Wea. Rev., 135, 319.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , A. H. Sobel, , and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and P. Zuidema, 1996: Radiative–dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , T. S. L’Ecuyer, , and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Matthews, A. J., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17, 24272440.

  • Mo, K. C., , and R. W. Higgins, 1998: Tropical influences on California precipitation. J. Climate, 11, 412430.

  • Myers, D. S., , and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823836.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , I. M. Held, , and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., , W. H. Schubert, , and J. J. Hack, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53, 929945.

    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., , L. A. Byerle, , and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128, 837850.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20, 501524, doi:10.1007/s00162-006-0034-x.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , Z. Kuang, , and C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 52295241.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396.

  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898.

  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819.

  • Raymond, D. J., , G. B. Raga, , C. S. Bretherton, , J. Molinari, , C. Lopez-Carrillo, , and Z. Fuchs, 2003: Convective forcing in the intertropical convergence zone of the eastern Pacific. J. Atmos. Sci., 60, 20642082.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., , D. B. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457.

    • Search Google Scholar
    • Export Citation
  • Ridout, J. A., 2002: Sensitivity of tropical Pacific convection to dry layers at mid-to-upper levels: Simulation and parameterization tests. J. Atmos. Sci., 59, 33623381.

    • Search Google Scholar
    • Export Citation
  • Roca, R., , S. Louvet, , L. Picon, , and M. Desbois, 2005: A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data. Meteor. Atmos. Phys., 90, 4965.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and W. M. Frank, 2004: Climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991.

  • Sikka, D. R., , and S. Gadgil, 1980: On the maximum cloud zone and ITCZ over the Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 11221135.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992.

  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , P. J. Webster, , R. H. Johnson, , R. Engelen, , and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical seasurface temperatures. J. Climate, 17, 22132224.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009a: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009b: The moisture mode in the quasi-equilibrium tropical circulation model. Part II: Nonlinear behavior on an equatorial β plane. J. Atmos. Sci., 66, 15251542.

    • Search Google Scholar
    • Export Citation
  • Sui, K.-H., , and K.-M. Lau, 1992: Multiscale phenomenon in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., , O. Hirayama, , and C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophys. Res. Lett., 31, L11109, doi:10.1029/2004GL020225.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2006: The experimental MJO prediction project. Bull. Amer. Meteor. Soc., 87, 425431.

  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065.

  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convective anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286.

  • Wang, W., , and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon transition: Surface hydrology effects. J. Atmos. Sci., 40, 21102124.

  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 18381858.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., , G. N. Kiladis, , and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 467 pp.

  • Woolnough, S. J., , J. M. Slingo, , and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127, 887907.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. Chen, , and W.-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global View. J. Atmos. Sci., 57, 23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , B. Hoskins, , and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., , and B. E. Mapes, 2012: Differences between more-divergent vs. more-rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. J. Atmos. Sci., 53, 739758.

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , and H. H. Hendon, 1997: On propagating and stationary components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 255 255 78
PDF Downloads 240 240 73

Moist Static Energy Budget of MJO-like Disturbances in the Atmosphere of a Zonally Symmetric Aquaplanet

View More View Less
  • 1 Department of Physics, Harvard University, Cambridge, Massachusetts
  • | 2 Department of Earth and Planetary Science, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

A Madden–Julian oscillation (MJO)-like spectral feature is observed in the time–space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM). This disturbance possesses the basic structural and propagation features of the observed MJO.

To explore the processes involved in propagation and maintenance of this disturbance, this study analyzes the MSE budget of the disturbance. The authors observe that the disturbances propagate both eastward and poleward. The column-integrated longwave heating is the only significant source of column-integrated MSE acting to maintain the MJO-like anomaly balanced against the combination of column-integrated horizontal and vertical advection of MSE and latent heat flux. Eastward propagation of the MJO-like disturbance is associated with MSE generated by both column integrated horizontal and vertical advection of MSE, with the column longwave heating generating MSE that retards the propagation.

The contribution to the eastward propagation by the column-integrated horizontal advection of MSE is dominated by synoptic eddies. Further decomposition indicates that the advection contribution to the eastward propagation is dominated by meridional advection of MSE by anomalous synoptic eddies caused by the suppression of eddy activity ahead of the MJO convection. This suppression is linked to the barotropic conversion mechanism, with the gradients of the low-frequency wind experienced by the synoptic eddies within the MJO envelope acting to modulate the eddy kinetic energy. The meridional eddy advection’s contribution to poleward propagation is dominated by the mean state’s (meridionally varying) eddy activity acting on the anomalous MSE gradients associated with the MJO.

Corresponding author address: Joseph Andersen, Department of Physics, Harvard University, Cambridge, MA 02138. E-mail: jaanders@fas.harvard.edu

Abstract

A Madden–Julian oscillation (MJO)-like spectral feature is observed in the time–space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM). This disturbance possesses the basic structural and propagation features of the observed MJO.

To explore the processes involved in propagation and maintenance of this disturbance, this study analyzes the MSE budget of the disturbance. The authors observe that the disturbances propagate both eastward and poleward. The column-integrated longwave heating is the only significant source of column-integrated MSE acting to maintain the MJO-like anomaly balanced against the combination of column-integrated horizontal and vertical advection of MSE and latent heat flux. Eastward propagation of the MJO-like disturbance is associated with MSE generated by both column integrated horizontal and vertical advection of MSE, with the column longwave heating generating MSE that retards the propagation.

The contribution to the eastward propagation by the column-integrated horizontal advection of MSE is dominated by synoptic eddies. Further decomposition indicates that the advection contribution to the eastward propagation is dominated by meridional advection of MSE by anomalous synoptic eddies caused by the suppression of eddy activity ahead of the MJO convection. This suppression is linked to the barotropic conversion mechanism, with the gradients of the low-frequency wind experienced by the synoptic eddies within the MJO envelope acting to modulate the eddy kinetic energy. The meridional eddy advection’s contribution to poleward propagation is dominated by the mean state’s (meridionally varying) eddy activity acting on the anomalous MSE gradients associated with the MJO.

Corresponding author address: Joseph Andersen, Department of Physics, Harvard University, Cambridge, MA 02138. E-mail: jaanders@fas.harvard.edu
Save