• Alory, G. S., and Coauthors, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., 2010: Moist dynamical linkage between the equatorial Indian Ocean and the South Asian monsoon trough. J. Atmos. Sci., 67, 589610.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability over the Asian summer monsoon. Climate Dyn., 18, 85102.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and P. Liu, 2005: Response of the Asian summer monsoon to changes in El Niño properties. Quart. J. Roy. Meteor. Soc., 131, 805831.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , K. Hamilton, , and K. R. Sperber, 2007: The South Asian monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and P. Sardeshmukh, 2002: Global atmosphere sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273441.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82, 22172243.

  • Cai, S., , Y. He, , S. Wang, , and X. Long, 2009: Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model. J. Geophys. Res., 114, C03026, doi:10.1029/2008JC005109.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , and P. Molnar, 2001: Closing of the Indonesian seaway as a precursor to East African aridification around 3–4 million years ago. Nature, 411, 157162.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–109.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cook, K. H., , G. A. Meehl, , and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 26092621.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–92. J. Climate, 9, 8596.

  • Ffield, A., , and A. L. Gordon, 1992: Vertical mixing in the Indonesian thermocline. J. Phys. Oceanogr., 22, 184195.

  • Gadgil, S., 1990: Poleward propagation of the ITCZ: Observations and theory. Mausam (New Delhi), 41, 285290.

  • Gadgil, S., 2000: Monsoon–ocean coupling. Curr. Sci., 78, 309323.

  • Gent, P., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Coauthors, 2010: The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Praxis, 19–61.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and R. S. Ajaymohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and Coauthors, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , T. B. Sanford, , and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790.

  • Hendon, H. H., , E.-P. Lim, , and G. Liu, 2012: The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Climate, 25, 12781290.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , M. M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , and J. Potemra, 2008: Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Climate, 21, 64456454.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , B. Fox-Kemper, , P. H. Molnar, , and C. Shields, 2009: Differences in the Indonesian Seaway in a coupled climate model and their relevance for Pliocene climate and El Niño. Paleoceanography, 24, PA1212, doi:10.1029/2008PA001678.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., , W. Wang, , and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Kalnay E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kirtman, B. P., , and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126, 16231646.

  • Krishnamurti, T. N., , and P. Ardunay, 1980: The 10 to 20 day westward propagating mode and “breaks” in the monsoons. Tellus, 32, 1526.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095.

  • Kumar, K., and Coauthors, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159.

  • Lawrence, D. M., , and P. J. Webster, 2001: Interannual variations of the intraseasonal oscillation in the south Asian summer monsoon region. J. Climate, 14, 29102922.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Detection of a 40-50-day oscillation in the zonal wind in the tropical Pacific. Mon. Wea. Rev., 122, 813837.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and J. M. Arblaster, 1998: The Asian–Australian monsoon and El Niño–Southern Oscillation in the NCAR Climate System Model. J. Climate, 11, 13561385.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and J. M. Arblaster, 2011: Decadal variability of Asian–Australian monsoon–ENSO–TBO relationships. J. Climate, 24, 49254940.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Ocean regions and the TBO. J. Climate, 16, 21382158.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Monsoon regimes in the CCSM3. J. Climate, 19, 24822495.

  • Meehl, G. A., , A. Hu, , and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , T. Nakazawa, , and J. He, 1984: On the 40–50-day oscillation during 1979 Northern Hemisphere summer. Part I: Phase propagation. J. Meteor. Soc. Japan, 62, 440468.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., , J. L. McBride, , and R. J. Ormerod, 1982: On predicting the onset of the Australian wet season at Darwin. Mon. Wea. Rev., 110, 1417.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and D. A. Mansfield, 1984: Response of two atmospheric general circulation models to SST anomalies in the tropical east and west Pacific. Nature, 310, 483488.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , C. Brankovic, , P. Viterbo, , and M. J. Miller, 1992: Modeling interannual variability of summer monsoons. J. Climate, 5, 399417.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., , K. Rupakumar, , and A. A. Munot, 1994: All-India monthly and seasonal rainfall series: 1871-1993. Theor. Appl. Climatol., 49, 217224.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., , and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718.

  • Raymond, D., , and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, J., , and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., , and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036.

    • Search Google Scholar
    • Export Citation
  • Seo, H., , S.-P. Xie, , R. Murtugudde, , M. Jochum, , and A. J. Miller, 2009: Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Climate, 22, 65776596.

    • Search Google Scholar
    • Export Citation
  • Shankar, D., , S. R. Shetye, , and P. V. Joseph, 2007: Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. J. Earth Syst. Sci., 116, 385406.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1980: Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc. Indian Natl. Sci. Acad., 89, 179195.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppla, , D. De, , and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , and H. Annamalai, 2000: The El Niño of the century and the response of the Indian summer monsoon. Mon. Wea. Rev., 128, 17781797.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9, 27272750.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30–50 day) variability. Part I: Systematic errors and caution on use of metrics. Climate Dyn., 31, 345372, doi:10.1007/s00382-008-0367-9.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A. C., , M. Jochum, , M. Miller, , A. J. Murtugudde, , R. B. Neale, , and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., , P. M. Inness, , and J. M. Slingo, 2005: The role of the basic state in the ENSO–monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131, 781804.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vecchi, G. A., , and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., , A. L. Gordon, , and A. Ffield, 2002: The heat transport of the ITF and implications for the Indian Ocean heat budget. Deep-Sea Res. II, 49, 13911410.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 1993: The circulation of the depth-integrated flow around an island with application to the Indonesian Throughflow. J. Phys. Oceanogr., 23, 14701484.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K. M. Lau, , and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030.

  • Walker, G. T., 1924: Correlations in seasonal variations of weather—A further study of world weather. World Weather II. Mem. Indian Meteor. Dep.,24, 275–332.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., , and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926.

  • Webster, P. J., , V. O. Magana, , T. N. Palmer, , J. Shukla, , R. T. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects of prediction. J. Geophys. Res., 103 (C7), 14 45114 510.

    • Search Google Scholar
    • Export Citation
  • Wen, M., , T. Li, , R. Zhang, , and Y. Qi, 2010: Structure and origin of the quasi-biweekly oscillation over the tropical Indian Ocean in boreal spring. J. Atmos. Sci., 67, 19651982.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and J. L. McBride, 2011: Australasian monsoon. Intraseasonal Variability of the Atmosphere-Ocean Climate System, 2nd ed, W. K. M. Lau and D. E. Waliser, Eds, Springer, 147–198.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , H. H. Hendon, , S. Cleland, , H. Meinke, , and A. Donald, 2009: Impacts of the Madden–Julian Oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical oceanography of the Southeast Asian waters. Scripps Institute of Oceanography NAGA Rep. 2, 195 pp.

  • Xie, P., , and P. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , T. M. Smith, , and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612.

    • Search Google Scholar
    • Export Citation
  • Yoo, S.-H., , S. Yang, , and C.-H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian–Australian monsoon climate. J. Geophys. Res., 111, D03108, doi:10.1029/2005JD006001.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , M. Dong, , S. Gualdi, , H. H. Hendon, , E. D. Maloney, , A. Marshall, , K. R. Sperber, , and W. Q. Wang, 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , R. Neale, , M. Jochem, , and R. Murtugudde, 2012: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 18
PDF Downloads 77 77 16

Monsoon Regimes and Processes in CCSM4. Part I: The Asian–Australian Monsoon

View More View Less
  • 1 * National Center for Atmospheric Research,** Boulder, Colorado
  • | 2 CAWCR, Bureau of Meteorology, Melbourne, Australia
  • | 3 University of Hawaii at Manoa, Honolulu, Hawaii
  • | 4 Centre for Atmospheric and Oceanic Sciences, and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
  • | 5 University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The simulation characteristics of the Asian–Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 [Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean–atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian–Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian–Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Niño in CCSM4 contributes to more realistic connections between the Asian–Australian monsoon and El Niño–Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon–ENSO connection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: G. Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

The simulation characteristics of the Asian–Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 [Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean–atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian–Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian–Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Niño in CCSM4 contributes to more realistic connections between the Asian–Australian monsoon and El Niño–Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon–ENSO connection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: G. Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu

This article is included in the CCSM4 Special Collection.

Save