• Abbot, D. S., , and I. Halevy, 2010: Dust aerosol important for Snowball Earth deglaciation. J. Climate, 23, 41214132.

  • Abbot, D. S., , and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115, D03104, doi:10.1029/2009JD012007.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., , I. Eisenman, , and R. T. Pierrehumbert, 2010: The importance of ice resolution for Snowball climate and deglaciation. J. Climate, 23, 61006109.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., , A. Voigt, , and D. Koll, 2011: The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res., 116, D18103, doi:10.1029/2011JD015927.

    • Search Google Scholar
    • Export Citation
  • Allen, P. A., , and J. L. Etienne, 2008: Sedimentary challenge to Snowball Earth. Nat. Geosci., 1, 817825.

  • Baum, S. K., , and T. J. Crowley, 2001: GCM response to Late Precambrian (~590 Ma) ice-covered continents. Geophys. Res. Lett., 28, 583586.

    • Search Google Scholar
    • Export Citation
  • Bendtsen, J., 2002: Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dyn., 18, 595609.

  • Bitz, C. M., , and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677.

  • Bitz, C. M., , M. M. Holland, , A. J. Weaver, , and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463.

    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., , S. G. Warren, , A. P. Worby, , and T. C. Grenfell, 2005: Surface albedo of the Antarctic sea ice zone. J. Climate, 18, 36063622.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., , and B. Light, 2007: A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note NCAR/TN-472+STR, 108 pp.

  • Briegleb, B. P., , C. M. Bitz, , E. C. Hunke, , W. H. Lipscomb, , M. M. Holland, , J. L. Schramm, , and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR/TN-463+STR, 78 pp.

  • Budyko, M. I., 1969: Effect of solar radiation variations on climate of earth. Tellus, 21, 611619.

  • Chandler, M. A., , and L. E. Sohl, 2000: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res., 105 (D16), 20 73720 756.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp.

  • Collins, W. D., and Coauthors, 2006a: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, 713, doi:10.1029/2005JD006.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Crowley, T. J., , and S. K. Baum, 1993: Effect of decreased solar luminosity on Late Precambrian ice extent. J. Geophys. Res., 98, 16 72316 732.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., , W. T. Hyde, , and W. R. Peltier, 2001: CO2 levels required for deglaciation of a “near-Snowball” Earth. Geophys. Res. Lett., 28, 283286.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°. Science, 317, 935938.

    • Search Google Scholar
    • Export Citation
  • Curry, J., , J. L. Schramm, , and E. E. Ebert, 1995: Sea ice–albedo climate feedback mechanism. J. Climate, 8, 240247.

  • Dadic, R., , B. Light, , and S. G. Warren, 2010: Migration of air bubbles in ice under a temperature gradient, with application to “Snowball Earth.” J. Geophys. Res., 115, D18125, doi:10.1029/2010JD014148.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , A. Henderson-Sellers, , and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

  • Donnadieu, Y., , G. Ramstein, , F. Fluteau, , D. Roche, , and A. Ganopolski, 2004: The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic. Climate Dyn., 22, 293306.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , and J. A. Curry, 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98 (C6), 10 08510 109.

    • Search Google Scholar
    • Export Citation
  • Eicken, H., , T. C. Grenfell, , D. K. Perovich, , J. A. Richter-Menge, , and K. Frey, 2004: Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res., 109, C08007, doi:10.1029/2003JC001989.

    • Search Google Scholar
    • Export Citation
  • Evans, D. A. D., 2000: Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Amer. J. Sci., 300, 347433.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Goodman, J. C., , and R. T. Pierrehumbert, 2003: Glacial flow of floating marine ice in “Snowball Earth.” J. Geophys. Res., 108, 3308, doi:10.1029/2002JC001471.

    • Search Google Scholar
    • Export Citation
  • Gough, D. O., 1981: Solar interior structure and luminosity variations. Sol. Phys., 74, 2134.

  • Hansen, J. E., , A. Lacis, , D. Rind, , G. Russell, , P. Stone, , I. Fung, , R. Ruedy, , and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • Harland, W. B., , and D. E. T. Bidgood, 1959: Palæomagnetism in some Norwegian sparagmites and the Late Pre-Cambrian ice age. Nature, 184, 18601862.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: Dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846.

  • Hoffman, P. F., , and D. P. Schrag, 2002: The Snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129155.

  • Hoffman, P. F., , A. J. Kaufman, , G. P. Halverson, , and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281, 13421346.

  • Holland, M. M., , C. M. Bitz, , E. C. Hunke, , W. H. Lipscomb, , and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414.

    • Search Google Scholar
    • Export Citation
  • Hu, Y. Y., , J. Yang, , F. Ding, , and W. R. Peltier, 2011: Model-dependence of the CO2 threshold for melting the hard Snowball Earth. Climate Past, 7, 1725.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867.

  • Hunke, E. C., , and J. K. Dukowicz, 2002: The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Incorporation of metric terms. Mon. Wea. Rev., 130, 18481865.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model: Documentation and software user’s manual, version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hyde, W. T., , T. J. Crowley, , S. K. Baum, , and W. R. Peltier, 2000: Neoproterozoic “Snowball Earth” simulations with a coupled climate/ice-sheet model. Nature, 405, 425429.

    • Search Google Scholar
    • Export Citation
  • Ikeda, T., , and E. Tajika, 1999: A study of the energy balance climate model with CO2-dependent outgoing radiation: Implication for the glaciation during the Cenozoic. Geophys. Res. Lett., 26, 349352.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., , and S. R. Smith, 1999: GCM simulation of Snowball Earth conditions during the Late Proterozoic. Geophys. Res. Lett., 26, 22632266.

    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low-latitude global glaciation: The Snowball Earth. The Proterozoic Biosphere, J. W. Schopf and C. Klein, Eds., Cambridge University Press, 51–52.

  • Le-Hir, G., , Y. Donnadieu, , G. Krinner, , and G. Ramstein, 2010: Toward the Snowball Earth deglaciation. Climate Dyn., 35, 285297, doi:10.1007/s00382-010-0748-8.

    • Search Google Scholar
    • Export Citation
  • Levrard, B., , and J. Laskar, 2003: Climate friction and the earth’s obliquity. Geophys. J. Int., 154, 970990.

  • Lewis, J. P., , M. Eby, , A. J. Weaver, , S. T. Johnston, , and R. L. Jacob, 2004: Global glaciation in the Neoproterozoic: Reconciling previous modelling results. Geophys. Res. Lett., 31, L08201, doi:10.1029/2004GL019725.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., , A. J. Weaver, , and M. Eby, 2006: Deglaciating the Snowball Earth: Sensitivity to surface albedo. Geophys. Res. Lett., 33, L23604, doi:10.1029/2006GL027774.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., , A. J. Weaver, , and M. Eby, 2007: Snowball versus Slushball Earth: Dynamic versus nondynamic sea ice? J. Geophys. Res., 112, C11014, doi:10.1029/2006JC004037.

    • Search Google Scholar
    • Export Citation
  • Li, Z. X., and Coauthors, 2008: Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res., 160, 179210.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., 1998: Temporal variability of the energy balance of thick Arctic pack ice. J. Climate, 11, 313333.

  • Liu, Y., , and W. R. Peltier, 2010: A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a “soft Snowball.” J. Geophys. Res., 115, D17111, doi:10.1029/2009JD013082.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and W. R. Peltier, 2011: A carbon cycle coupled climate model of Neoproterozoic glaciation: Explicit carbon cycle with stochastic perturbations. J. Geophys. Res., 116, D02125, doi:10.1029/2010JD015128.

    • Search Google Scholar
    • Export Citation
  • Lüthje, M., , D. L. Feltham, , P. D. Taylor, , and M. G. Worster, 2006: Modeling the summertime evolution of sea-ice melt ponds. J. Geophys. Res., 111, C02001, doi:10.1029/2004JC002818.

    • Search Google Scholar
    • Export Citation
  • Macdonald, F. A., and Coauthors, 2010: Calibrating the Cryogenian. Science, 327, 12411243.

  • McKay, C. P., 2000: Thickness of tropical ice and photosynthesis on a Snowball Earth. Geophys. Res. Lett., 27, 21532156.

  • McLaren, A. J., and Coauthors, 2006: Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J. Geophys. Res., 111, C12014, doi:10.1029/2005JC003033.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Micheels, A., , and M. Montenari, 2008: A Snowball Earth versus a Slushball Earth: Results from Neoproterozoic climate modeling sensitivity experiments. Geosphere, 4, 401410.

    • Search Google Scholar
    • Export Citation
  • Nazintsev, Y. L., 1964: Thermal balance of the surface of the perennial ice cover in the central Arctic (in Russian). Tr. Arkt. Antarkt. Nauchno-Issled. Inst., 267, 110126.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975: Analytical solution of a simple climate model with diffusive heat transport. J. Atmos. Sci., 32, 13011307.

  • North, G. R., , and M. J. Stevens, 2006: Energy-balance climate models. Frontiers of Climate Modeling, J. T. Kiehl and V. Ramanathan, Eds., Cambridge University Press, 52–72.

  • North, G. R., , R. F. Cahalan, , and J. A. Coakley Jr., 1981: Energy balance climate models. Rev. Geophys., 19, 91121.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Pedersen, C. A., , E. Roeckner, , M. Lüthje, , and J.-G. Winther, 2009: A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. J. Geophys. Res., 114, D08101, doi:10.1029/2008JD010440.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peltier, W. R., 2007: History of Earth rotation. Evolution of the Earth, D. Stevenson, Vol. 9, Treatise on Geophysics, Elsevier Press, 243–293.

  • Peltier, W. R., , L. Tarasov, , G. Vettoretti, , and L. P. Solheim, 2004: Climate dynamics in deep time: Modeling the “Snowball bifurcation” and assessing the plausibility of its occurrence. The Extreme Proterozoic: Geology, Geochemistry and Climate, Geophys. Monogr., Vol. 146, Amer. Geophys. Union, 107–124.

  • Peltier, W. R., , Y. Liu, , and J. W. Crowley, 2007: Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 450, 813818.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., 1996: The optical properties of sea ice. Cold Regions Research and Engineering Laboratory Rep., 31 pp.

  • Perovich, D. K., , T. C. Grenfell, , B. Light, , and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , T. C. Grenfell, , J. A. Richter-Menge, , B. Light, , W. B. Tucker III, , and H. Eicken, 2003: Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res., 108, 8050, doi:10.1029/2001JC001079.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , C. W. Fairall, , E. L. Andreas, , P. S. Guest, , and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8405, doi:10.1029/2000JC000.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2004: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429, 646649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2005: Climate dynamics of a hard Snowball Earth. J. Geophys. Res., 110, D01111, doi:10.1029/2004JD005162.

  • Pierrehumbert, R. T., , D. S. Abbot, , A. Voigt, , and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460.

    • Search Google Scholar
    • Export Citation
  • Poavlov, A. A., , M. T. Hurtgen, , J. F. Kasting, , and M. A. Arthur, 2003: Methane-rich proterozoic atmosphere? Geology, 31, 8790.

  • Pollard, D., , and J. F. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110, C07010, doi:10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., , and R. L. Jacob, 2004: Factors that inhibit Snowball Earth simulation. Paleoceanography, 19, PA4021, doi:10.1029/2004PA001056.

    • Search Google Scholar
    • Export Citation
  • Rigor, I., , J. Wallace, , R. Colony, , and S. Martin, 2000: Variations in surface air temperature observations in the Arctic, 1979–1997. J. Climate, 13, 896914.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., , and M. B. Baker, 2010: Notes on a catastrophe: A feedback analysis of Snowball Earth. J. Climate, 23, 46944703.

  • Romanova, V., , G. Lohmann, , and K. Grosfeld, 2006: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate Past, 2, 3142.

    • Search Google Scholar
    • Export Citation
  • Scharfen, G., , R. G. Barry, , D. A. Robinson, , G. J. Kukla, , and M. C. Serreze, 1987: Large-scale patterns of snow melt on Arctic sea ice mapped from meteorological satellite imagery. Ann. Glaciol., 9, 200205.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climate model based on the energy balance of the earth–atmosphere system. J. Appl. Meteor., 8, 392400.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: Model for thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory Tech. Note LAUR-10-01853, 141 pp.

  • Stephen, G. W., , and W. J. Warren, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., , and M. S. Yao, 2004: The ice-covered earth instability in a model of intermediate complexity. Climate Dyn., 22, 815822.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. M. Holland, , W. Meier, , T. Scambos, , and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , and J. Marotzke, 2009: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., 35, 887905, doi:10.1007/s00382-009-0633-5.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , D. S. Abbot, , R. T. Pierrehumbert, , and J. Marotzke, 2011: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model. Climate Past, 7, 249263.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , A. P. Trishchenko, , K. V. Khlopenkov, , and A. Davidson: 2006: Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J. Geophys. Res., 111, D21108, doi:10.1029/2005JD006728.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and C. Zender, 2010: MODIS albedo bias at high zenith angle relative to theory and to in situ observations in Greenland. Remote Sens. Environ., 114, 563575.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , and R. E. Brandt, 2006: Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res., 111, C09016, doi:10.1029/2005JC003411.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , R. E. Brandt, , T. C. Grenfell, , and C. P. Mckay, 2002: Snowball Earth: Ice thickness on the tropical ocean. J. Geophys. Res., 107, 3167, doi:10.1029/2001JC001123.

    • Search Google Scholar
    • Export Citation
  • Williams, D. M., , J. F. Kasting, , and L. A. Frakes, 1998: Low-latitude glaciation and rapid changes in the earth’s obliquity explained by obliquity-blateness feedback. Nature, 396, 453455.

    • Search Google Scholar
    • Export Citation
  • Williams, G. E., 1990: Tidal rhythmires: Key to the history of the Earth’s rotation and the lunar orbit. J. Phys. Earth, 38, 475491.

    • Search Google Scholar
    • Export Citation
  • Williams, G. E., 2008: Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests. Earth Sci. Rev., 87, 6173.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., , and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733.

  • Yang, J. & , and W. R. Peltier, 2012: The initiation of modern soft and hard Snowball Earth climates in CCSM4. Climate Past Discuss., 8, 129, doi:10.5194/cpd-8-1-2012.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , W. R. Peltier, , and Y. Hu, 2012: The initiation of modern “soft Snowball” and “hard Snowball” climates in CCSM3. Part II: Climate dynamic feedbacks. J. Climate, 25, 27372754.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , C. A. Shields, , W. G. Large, , and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 25452566.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 18
PDF Downloads 61 61 12

The Initiation of Modern “Soft Snowball” and “Hard Snowball” Climates in CCSM3. Part I: The Influences of Solar Luminosity, CO2 Concentration, and the Sea Ice/Snow Albedo Parameterization

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada, and Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • | 2 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 3 Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
© Get Permissions
Restricted access

Abstract

The “Snowball Earth” hypothesis, proposed to explain the Neoproterozoic glacial episodes in the period 750–580 million years ago, suggested that the earth was globally covered by ice/snow during these events. This study addresses the problem of the forcings required for the earth to enter such a state of complete glaciation using the Community Climate System Model, version 3 (CCSM3). All of the simulations performed to address this issue employ the geography and topography of the present-day earth and are employed to explore the combination of factors consisting of total solar luminosity, CO2 concentration, and sea ice/snow albedo parameterization that would be required for such an event to occur. The analyses demonstrate that the critical conditions beyond which runaway ice–albedo feedback will lead to global freezing include 1) a 10%–10.5% reduction in solar radiation with preindustrial greenhouse gas concentrations; 2) a 6% reduction in solar radiation with 17.5 ppmv CO2; or 3) 6% less solar radiation and 286 ppmv CO2 if sea ice albedo is equal to or greater than 0.60 with a snow albedo of 0.78, or if sea ice albedo is 0.58 with a snow albedo equal to or greater than 0.80. These bifurcation points are very sensitive to the sea ice and snow albedo parameterizations. Moreover, “soft Snowball” solutions are found in which tropical open water oceans stably coexist with year-round snow-covered low-latitude continents, implying that tropical continental ice sheets would actually be present. The authors conclude that a “soft Snowball” is entirely plausible, in which the global sea ice fraction may reach as high as 76% and sea ice margins may extend to 10°S(N) latitudes.

Corresponding author address: Jun Yang, 40 Gerrard Street East, Apt. 3308, Toronto ON M5B 2E8, Canada. E-mail: jyangdas@atmosp.physics.utoronto.ca

Abstract

The “Snowball Earth” hypothesis, proposed to explain the Neoproterozoic glacial episodes in the period 750–580 million years ago, suggested that the earth was globally covered by ice/snow during these events. This study addresses the problem of the forcings required for the earth to enter such a state of complete glaciation using the Community Climate System Model, version 3 (CCSM3). All of the simulations performed to address this issue employ the geography and topography of the present-day earth and are employed to explore the combination of factors consisting of total solar luminosity, CO2 concentration, and sea ice/snow albedo parameterization that would be required for such an event to occur. The analyses demonstrate that the critical conditions beyond which runaway ice–albedo feedback will lead to global freezing include 1) a 10%–10.5% reduction in solar radiation with preindustrial greenhouse gas concentrations; 2) a 6% reduction in solar radiation with 17.5 ppmv CO2; or 3) 6% less solar radiation and 286 ppmv CO2 if sea ice albedo is equal to or greater than 0.60 with a snow albedo of 0.78, or if sea ice albedo is 0.58 with a snow albedo equal to or greater than 0.80. These bifurcation points are very sensitive to the sea ice and snow albedo parameterizations. Moreover, “soft Snowball” solutions are found in which tropical open water oceans stably coexist with year-round snow-covered low-latitude continents, implying that tropical continental ice sheets would actually be present. The authors conclude that a “soft Snowball” is entirely plausible, in which the global sea ice fraction may reach as high as 76% and sea ice margins may extend to 10°S(N) latitudes.

Corresponding author address: Jun Yang, 40 Gerrard Street East, Apt. 3308, Toronto ON M5B 2E8, Canada. E-mail: jyangdas@atmosp.physics.utoronto.ca
Save