• Barry, R. G., , M. C. Serreze, , J. A. Maslanik, , and R. H. Preller, 1993: The Arctic sea ice-climate system: Observations and modeling. Rev. Geophys., 31, 397422.

    • Search Google Scholar
    • Export Citation
  • Baum, S. K., , and T. J. Crowley, 2001: GCM response to Late Precambrian (~590 Ma) ice-covered continents. Geophys. Res. Lett., 28, 583586.

    • Search Google Scholar
    • Export Citation
  • Bendtsen, J., 2002: Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dyn., 18, 595609.

  • Broccoli, A. J., , K. A. Dahl, , and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.

  • Chandler, M. A., , and L. E. Sohl, 2000: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res., 105 (D16), 20 73720 756.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Crowley, T. J., , W. T. Hyde, , and W. R. Peltier, 2001: CO2 levels required for deglaciation of a “near-Snowball” Earth. Geophys. Res. Lett., 28, 283286.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., , Y. Goddéris, , G. Ramstein, , A. Nédeléc, , and J. Meert, 2004a: A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303306, doi:10.1038/nature02.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., , G. Ramstein, , F. Fluteau, , D. Roche, , and A. Ganopolski, 2004b: The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic. Climate Dyn., 22, 293306.

    • Search Google Scholar
    • Export Citation
  • Enderton, D., , and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., 2006: Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett., 33, L16701, doi:10.1029/2006GL026840.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., , and R. T. Pierrehumbert, 2003: Glacial flow of floating marine ice in “Snowball Earth.” J. Geophys. Res., 108, 3308, doi:10.1029/2002JC001471.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533.

    • Search Google Scholar
    • Export Citation
  • Hu, Y. Y., , J. Yang, , F. Ding, , and W. R. Peltier, 2011: Model-dependence of the CO2 threshold for melting the hard Snowball Earth. Climate Past, 7, 1725.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., , T. J. Crowley, , S. K. Baum, , and W. R. Peltier, 2000: Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425429.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., , and S. R. Smith, 1999: GCM simulation of Snowball Earth conditions during the Late Proterozoic. Geophys. Res. Lett., 26, 22632266.

    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low-latitude global glaciation: The Snowball Earth. The Proterozoic Biosphere, J. W. Schopf and C. Klein, Eds., Cambridge University Press, 51–52.

  • Le-Hir, G., , G. Ramstein, , Y. Donnadieu, , and R. T. Pierrehumbert, 2007: Investigating plausible mechanisms to trigger a deglaciation from a hard Snowball Earth. C. R. Geosci., 339, 274287.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., , A. J. Weaver, , S. T. Johnston, , and M. Eby, 2003: Neoproterozoic “Snowball Earth”: Dynamic sea ice over a quiescent ocean. Paleoceanography, 18, 1092, doi:10.1029/2003PA000926.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., , A. J. Weaver, , and M. Eby, 2007: Snowball versus Slushball Earth: Dynamic versus nondynamic sea ice? J. Geophys. Res., 112, C11014, doi:10.1029/2006JC004037.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and W. R. Peltier, 2010: A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a “soft Snowball.” J. Geophys. Res., 115, D17111, doi:10.1029/2009JD013082.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and W. R. Peltier, 2011: A carbon cycle coupled climate model of Neoproterozoic glaciation: Explicit carbon cycle with stochastic perturbations. J. Geophys. Res., 116, D02125, doi:10.1029/2010JD015128.

    • Search Google Scholar
    • Export Citation
  • Micheels, A., , and M. Montenari, 2008: A Snowball Earth versus a Slushball Earth: Results from Neoproterozoic climate modeling sensitivity experiments. Geosphere, 4, 401410.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., , L. Tarasov, , G. Vettoretti, , and L. P. Solheim, 2004: Climate dynamics in deep time: Modeling the “Snowball bifurcation” and assessing the plausibility of its occurrence. The Extreme Proterozoic: Geology, Geochemistry and Climate, Geophys. Monogr., Vol. 146, Amer. Geophys. Union, 107–124.

  • Peltier, W. R., , Y. Liu, , and J. W. Crowley, 2007: Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 450, 813818.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419, 191198.

  • Pierrehumbert, R. T., 2004: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429, 646649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2005: Climate dynamics of a hard Snowball Earth. J. Geophys. Res., 110, D01111, doi:10.1029/2004JD005162.

  • Pierrehumbert, R. T., , D. S. Abbot, , A. Voigt, , and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., , and J. F. Kasting, 2004: Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. The Extreme Proterozoic: Geology, Geochemistry and Climate, Geophys. Monogr., Vol. 146, Amer. Geophys. Union, 91–105.

  • Pollard, D., , and J. F. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110, C07010, doi:10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., , and R. L. Jacob, 2004: Factors that inhibit Snowball Earth simulation. Paleoceanography, 19, PA4021, doi:10.1029/2004PA001056.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., , R. T. Pierrehumbert, , and R. L. Jacob, 2001: Impact of ocean dynamics on the simulation of the Neoproterozoic “Snowball Earth.” Geophys. Res. Lett., 28, 15751578.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., , R. L. Jacob, , R. T. Pierrehumbert, , and T. T. Huynh, 2002: Testing paleogeographic controls on a Neoproterozoic Snowball Earth. Geophys. Res. Lett., 29, 1515, doi:10.1029/2001GL014352.

    • Search Google Scholar
    • Export Citation
  • Raval, A., , and V. Ramanathan, 1989: Observational determination of the greenhouse effect. Nature, 342, 758761.

  • Roe, G. H., , and M. B. Baker, 2010: Notes on a catastrophe: A feedback analysis of Snowball Earth. J. Climate, 23, 46944703.

  • Romanova, V., , G. Lohmann, , and K. Grosfeld, 2006: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate Past, 2, 3142.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., , and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843.

    • Search Google Scholar
    • Export Citation
  • Rothman, D. H., , J. M. Hayes, , and R. E. Summons, 2003: Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. USA, 100, 81248129.

    • Search Google Scholar
    • Export Citation
  • Solheim, L. P., , and W. R. Peltier, 2004: The climate of the Earth at Last Glacial Maximum: Statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23, 335357.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.

  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139.

  • Stone, P. H., , and M. S. Yao, 2004: The ice-covered Earth instability in a model of intermediate complexity. Climate Dyn., 22, 815822.

    • Search Google Scholar
    • Export Citation
  • Tajika, E., 2003: Faint young sun and the carbon cycle: Implication for the Proterozoic global glaciations. Earth Planet. Sci. Lett., 214, 443453.

    • Search Google Scholar
    • Export Citation
  • Talley, L., , J. Reid, , and P. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133224.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Voigt, A., , and J. Marotzke, 2010: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., 35, 887905, doi:10.1007/s00382-009-0633-5.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , D. S. Abbot, , R. T. Pierrehumbert, , and J. Marotzke, 2011: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model. Climate Past, 7, 249263.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 19541961.

  • Yang, J., , W. R. Peltier, , and Y. Y. Hu, 2012: The initiation of modern “soft Snowball” and “hard Snowball” climates in CCSM3. Part I: The influence of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Climate, 25, 27112736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 4
PDF Downloads 31 31 5

The Initiation of Modern “Soft Snowball” and “Hard Snowball” Climates in CCSM3. Part II: Climate Dynamic Feedbacks

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada, and Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • | 2 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 3 Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
© Get Permissions
Restricted access

Abstract

This study investigates the climate dynamic feedbacks during a transition from the present climate to the extremely cold climate of a “Snowball Earth” using the Community Climate System Model, version 3 (CCSM3). With the land–sea distribution fixed to modern, it is found that by reducing solar luminosity and/or carbon dioxide concentration: 1) the amount of atmospheric water vapor and its attendant greenhouse effect decrease with the logarithm of sea ice cover, thereby promoting the expansion of sea ice; 2) over the sea ice, the cloud radiative feedback is positive, thus enhancing sea ice advance; over the ocean, the cloud radiative feedback is first negative and then becomes positive as sea ice enters the tropics; and 3) the strength of the atmospheric Hadley cell and the wind-driven ocean circulation increases significantly in the Southern Hemisphere, inhibiting the expansion of sea ice into the tropics. Meanwhile, the North Atlantic Deep Water cell disappears and the Antarctic Bottom Water cell strengthens and expands to occupy almost the entire Atlantic basin. In the experiment with 6% less solar radiation and 70 ppmv CO2 compared to the control experiment with 100% solar radiation and 355 ppmv CO2 near the ice edge (28°S latitude), the changes of solar radiation, CO2 forcing, water vapor greenhouse effect, longwave cloud forcing at the top of the model, and atmospheric and oceanic energy transport are −22.4, −6.2, −54.4, +6.2, and +16.3 W m−2, respectively. Therefore, the major controlling factors in producing global ice cover are ice albedo feedback (Yang et al., Part I) and water vapor feedback.

Corresponding author address: Jun Yang, 40 Gerrard Street East, Apt. 3308, Toronto ON M5B 2E8, Canada. E-mail: jyangdas@atmosp.physics.utoronto.ca

Abstract

This study investigates the climate dynamic feedbacks during a transition from the present climate to the extremely cold climate of a “Snowball Earth” using the Community Climate System Model, version 3 (CCSM3). With the land–sea distribution fixed to modern, it is found that by reducing solar luminosity and/or carbon dioxide concentration: 1) the amount of atmospheric water vapor and its attendant greenhouse effect decrease with the logarithm of sea ice cover, thereby promoting the expansion of sea ice; 2) over the sea ice, the cloud radiative feedback is positive, thus enhancing sea ice advance; over the ocean, the cloud radiative feedback is first negative and then becomes positive as sea ice enters the tropics; and 3) the strength of the atmospheric Hadley cell and the wind-driven ocean circulation increases significantly in the Southern Hemisphere, inhibiting the expansion of sea ice into the tropics. Meanwhile, the North Atlantic Deep Water cell disappears and the Antarctic Bottom Water cell strengthens and expands to occupy almost the entire Atlantic basin. In the experiment with 6% less solar radiation and 70 ppmv CO2 compared to the control experiment with 100% solar radiation and 355 ppmv CO2 near the ice edge (28°S latitude), the changes of solar radiation, CO2 forcing, water vapor greenhouse effect, longwave cloud forcing at the top of the model, and atmospheric and oceanic energy transport are −22.4, −6.2, −54.4, +6.2, and +16.3 W m−2, respectively. Therefore, the major controlling factors in producing global ice cover are ice albedo feedback (Yang et al., Part I) and water vapor feedback.

Corresponding author address: Jun Yang, 40 Gerrard Street East, Apt. 3308, Toronto ON M5B 2E8, Canada. E-mail: jyangdas@atmosp.physics.utoronto.ca
Save