• Bitz, C. M., , D. S. Battisti, , R. E. Moritz, , and J. A. Beesley, 1996: Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J. Climate, 9, 394408.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , M. M. Holland, , A. J. Weaver, , and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 (C2), 24412463.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., , K. Armour, , C. Bitz, , and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 1999: ARPEGE version 3, documentation algorithmique et mode d’emploi. CNRM Working Note, 55 pp.

  • Douville, H., , J. F. Royer, , and J. F. Mahfouf, 1995: A new snow parametrization for the Météo-France climate model. Climate Dyn., 12, 2135.

    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., , J. A. Maslanik, , and C. Fowler, 2006: A long-range forecast of Arctic summer sea-ice minimum extent. Geophys. Res. Lett., 33, L10501, doi:10.1029/2006GL026216.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., , and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 (C6), 12 60912 646.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., 1995: Spatial and temporal variability of Arctic ice thickness. Ann. Glaciol., 21, 323329.

  • Francis, J. A., , W. Chan, , D. J. Leathers, , J. R. Miller, , and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., , and C. Köberle, 2007: Comparison of Arctic sea ice thickness variability in IPCC Climate of the 20th Century experiments and in ocean–sea ice hindcasts. J. Geophys. Res., 112, C04S13, doi:10.1029/2006JC003616.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , O. Arzel, , C. M. Bitz, , A. de Montety, , and M. Vancoppenolle, 2009: Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett., 36, L23702, doi:10.1029/2009GL040546.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., , and G. L. Mellor, 1992: Modeling the seasonal variability of a coupled Arctic ice-ocean system. J. Geophys. Res., 97 (C12), 20 28520 304.

    • Search Google Scholar
    • Export Citation
  • Holland, M., , C. Bitz, , L.-B. Tremblay, , and D. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 133–150.

    • Search Google Scholar
    • Export Citation
  • Holland, M., , D. Bailey, , and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867.

  • Hunke, E. C., , and C. M. Bitz, 2009: Age characteristics in a multidecadal Arctic sea ice simulation. J. Geophys. Res., 114, C08013, doi:10.1029/2008JC005186.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2011: Climate change under aggressive mitigation: The ENSEMBLES multi-model experiment. Climate Dyn., 37, 19752003, doi:10.1007/s00382-011-1005-5.

    • Search Google Scholar
    • Export Citation
  • Kauker, F., , T. Kaminski, , M. Karcher, , R. Giering, , R. Gerdes, , and M. Voßbeck, 2009: Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Lett., 36, L03707, doi:10.1029/2008GL036323.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., , E. Trinkl, , and K. Hasselmann, 1980: Stochastic dynamic analysis of polar sea ice variability. J. Phys. Oceanogr., 10, 21002120.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper 13, 190 pp.

  • Lindsay, R. W., , J. Zhang, , A. Schweiger, , and M. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., 2001: Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106, 13 98914 000.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. IPSL Notes du Pôle de Modélisation 11, 97 pp.

    • Search Google Scholar
    • Export Citation
  • Maykut, G., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87 (C10), 79717984.

  • Notz, D., 2009: The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proc. Natl. Acad. Sci. USA, 106, 20 59020 595, doi:10.1073/pnas.0902356106.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., , and V. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , M. Botzet, , M. Latif, , A. Roesch, , M. Wild, , and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , and M. A. Johnson, 2000: Arctic decadal and interdecadal variability. Geophys. Res. Lett., 27, 40974100.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., , J. M. Wallace, , and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482668.

  • Salas-Mélia, D., 2002: A global coupled sea ice/ocean model. Ocean Modell., 4, 137172.

  • Salas-Mélia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global climate model. CNRM Note de Centre 103, 36 pp.

  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stern, H. L., , R. W. Lindsay, , C. M. Bitz, , and P. Hezel, 2008: What is the trajectory of Arctic sea ice? Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 175–185.

    • Search Google Scholar
    • Export Citation
  • Terray, L., , S. Valcke, , and A. Piacentini, 1998: OASIS 2.2 ocean atmosphere sea ice soil, user’s guide and reference manual. CERFACS Tech. Rep. TR/CMGC/98-05, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., , D. A. Rothrock, , G. A. Maykut, , and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 (33), 45014513.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vancoppenolle, M., , T. Fichefet, , H. Goosse, , S. Bouillon, , G. Madec, , and M. A. Morales Maqueda, 2009: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 3353, doi:10.1016/j.ocemod.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic seas during the period 1864-1998. J. Climate, 14, 255267.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1970: WMO sea-ice nomenclature. WMO Publ. 259, Tech. Paper 145, 147 pp.

  • Zhang, J., , M. Steele, , R. W. Lindsay, , A. Schweiger, , and J. Morison, 2008: Ensemble 1-year predictions of Arctic sea ice for spring and summer of 2008. Geophys. Res. Lett., 35, L08502, doi:10.1029/2008GL033244.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 19
PDF Downloads 99 99 16

The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic Approach with a Coupled GCM

View More View Less
  • 1 Groupe d’Etude de l’Atmosphère Météorologique, Centre National de Recherches Météorologiques Météo-France/CNRS, Toulouse, France
© Get Permissions
Restricted access

Abstract

The intrinsic seasonal predictability of Arctic sea ice is investigated in a 400-yr-long preindustrial simulation performed with the Centre National de Recherches Météorologiques Coupled Global Climate Model, version 3.3 (CNRM-CM3.3). The skill of several predictors of the pan-Arctic sea ice area was quantified: the sea ice area itself, the pan-Arctic sea ice volume, and some areal predictors built from the subgrid ice thickness distribution (ITD). Sea ice area provides a potential predictability of about 3 months, which is consistent with previous studies using model and observation data. Sea ice volume predictive skill for winter sea ice area prediction is weak. Nevertheless, there is a higher potential to predict the September ice area with the June volume anomaly than with the June area anomaly. Using ITD-based predictors, two “regimes” of predictability were highlighted. The first one, a “persistence regime,” applies to winter/early spring sea ice seasonal predictability. The winter sea ice cover can be predicted in late fall/early winter from the amount of young ice formed since the freeze-up onset in the margins. However, sea ice area itself is potentially the best predictor of winter sea ice area at seasonal time scales. The second regime is a “memory regime.” It applies to the predictability of summer sea ice area. An ice area anomaly in September is potentially predictable up to 6 months in advance, using the area covered by ice thicker than a critical thickness lying between 0.9 and 1.5 m. Results of this study are preliminary; however, they provide information for the design of future prediction systems and highlight the need for observations and a state-of-the-art sea ice model.

Corresponding author address: Matthieu Chevallier, CNRM-GAME/GMGEC/ASTER, Météo-France, 42, Avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. E-mail: matthieu.chevallier@meteo.fr

Abstract

The intrinsic seasonal predictability of Arctic sea ice is investigated in a 400-yr-long preindustrial simulation performed with the Centre National de Recherches Météorologiques Coupled Global Climate Model, version 3.3 (CNRM-CM3.3). The skill of several predictors of the pan-Arctic sea ice area was quantified: the sea ice area itself, the pan-Arctic sea ice volume, and some areal predictors built from the subgrid ice thickness distribution (ITD). Sea ice area provides a potential predictability of about 3 months, which is consistent with previous studies using model and observation data. Sea ice volume predictive skill for winter sea ice area prediction is weak. Nevertheless, there is a higher potential to predict the September ice area with the June volume anomaly than with the June area anomaly. Using ITD-based predictors, two “regimes” of predictability were highlighted. The first one, a “persistence regime,” applies to winter/early spring sea ice seasonal predictability. The winter sea ice cover can be predicted in late fall/early winter from the amount of young ice formed since the freeze-up onset in the margins. However, sea ice area itself is potentially the best predictor of winter sea ice area at seasonal time scales. The second regime is a “memory regime.” It applies to the predictability of summer sea ice area. An ice area anomaly in September is potentially predictable up to 6 months in advance, using the area covered by ice thicker than a critical thickness lying between 0.9 and 1.5 m. Results of this study are preliminary; however, they provide information for the design of future prediction systems and highlight the need for observations and a state-of-the-art sea ice model.

Corresponding author address: Matthieu Chevallier, CNRM-GAME/GMGEC/ASTER, Météo-France, 42, Avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. E-mail: matthieu.chevallier@meteo.fr
Save