• Anderson, D. L. T., , K. Bryan, , A. E. Gill, , and R. C. Pacanowski, 1979: The transient response of the North Atlantic: Some model studies. J. Geophys. Res., 84, 47954815.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere ocean model. J. Atmos. Sci., 45, 28892919.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1982: A comparison of long coastal trapped wave theory with observations off Peru. J. Phys. Oceanogr., 12, 897913.

  • Brink, K. H., 1991: Coastal-trapped waves and wind-driven currents over the continental-shelf. Annu. Rev. Fluid Mech., 23, 389412.

  • Chelton, D. B., , and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238.

  • Chelton, D. B., , R. A. DeSzoeke, , M. G. Schlax, , K. El Naggar, , and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , J. M. Lyman, , and G. C. Johnson, 2003: Equatorially trapped Rossby waves in the presence of meridionally sheared baroclinic flow in the Pacific Ocean. Prog. Oceanogr., 56, 323380.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , P. Y. Le Traon, , and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., , and M. J. McPhaden, 2004: The 30–70 day oscillations in the tropical Atlantic. Geophys. Res. Lett., 31, L15205, doi:10.1029/2004GL020023.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., 2007: Intraseasonal variability of the equatorial Indian Ocean observed from sea surface height, wind, and temperature data. J. Phys. Oceanogr., 37, 188202.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., , E. J. Christensen, , C. A. Yamarone, , M. Lefebvre, , Y. Menard, , M. Dorrer, , and P. Escudier, 1994: TOPEX/Poseidon mission overview. J. Geophys. Res., 99, 24 36924 381.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., , F. J. Wentz, , C. A. Mears, , and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Giese, B. J., , and D. E. Harrison, 1990: Aspects of the Kelvin wave response to episodic wind forcing. J. Geophys. Res., 95, 72897312.

    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728.

    • Search Google Scholar
    • Export Citation
  • Han, W., , D. M. Lawrence, , and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophys. Res. Lett., 28, 42154218.

    • Search Google Scholar
    • Export Citation
  • Han, W., , P. J. Webster, , J. L. Lin, , T. Liu, , R. Fu, , D. Yuan, , and A. Hu, 2008: Dynamics of intraseasonal sea level and thermocline variability in the equatorial Atlantic during 2002–03. J. Phys. Oceanogr., 38, 945967.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , B. Liebman, , and J. D. Glick, 1998: Oceanic Kelvin waves and the Madden Julian oscillation. J. Atmos. Sci., 55, 88101.

  • Huthnance, J. M., 1975: Trapped waves over a continental-shelf. J. Fluid Mech., 69, 689704.

  • Isoguchi, O., , and H. Kawamura, 2006: MJO-related summer cooling and phytoplankton blooms in the South China Sea in recent years. Geophys. Res. Lett., 33, L16615, doi:10.1029/2006GL027046.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J. K. E. Schemm, 2004: A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17, 20782095.

    • Search Google Scholar
    • Export Citation
  • Kang, I., , and H. Kim, 2010: Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J. Climate, 23, 23682378.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate, 8, 17571774.

  • Kessler, W. S., , M. J. McPhaden, , and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., , and D. E. Waliser, Eds., 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer-Praxis, 436 pp.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , G. Dibarboure, , and N. Ducet, 2001: Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. J. Atmos. Oceanic Technol., 18, 12771288.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , C. Stevens, , M. E. Conkright, , T. P. Boyer, and J. Antonov, 2002: World Ocean Database 2011. CD-ROM, NOAA.

  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., , and A. J. Matthews, 2009: Real-time localised forecasting of the Madden-Julian Oscillation using neural network models. Quart. J. Roy. Meteor. Soc., 135, 14711483.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50 day oscillation: A review. Mon. Wea. Rev., 122, 814836.

  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651.

  • Matthews, A. J., 2008: Primary and successive events in the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • Matthews, A. J., , P. Singhruck, , and K. J. Heywood, 2007: Deep ocean impact of a Madden-Julian oscillation observed by Argo floats. Science, 318, 17651768.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , P. Singhruck, , and K. J. Heywood, 2010: Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats. Climate Dyn., 35, 11491168.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1983: A model of tropical ocean–atmosphere interaction. Mon. Wea. Rev., 111, 370387.

  • McCreary, J. P., , P. K. Kundu, , and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954.

  • McPhaden, M. J., , and P. Ripa, 1990: Wave-mean flow interactions in the equatorial ocean. Annu. Rev. Fluid Mech., 22, 167205.

  • McPhaden, M. J., , F. Bahr, , Y. Dupenhoat, , E. Firing, , S. P. Hayes, , P. P. Niiler, , P. L. Richardson, , and J. M. Toole, 1992: The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J. Geophys. Res., 97, 14 28914 303.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., , and K. R. Thompson, 2010: Madden-Julian Oscillation and sea level: Local and remote forcing. J. Geophys. Res., 115, C01003, doi:10.1029/2009JC005337.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., , and K. R. Thompson, 2011: Sea level and circulation variability of the Gulf of Carpentaria: Influence of the Madden-Julian Oscillation and the adjacent deep ocean. J. Geophys. Res., 116, C02019, doi:10.1029/2010JC006596.

    • Search Google Scholar
    • Export Citation
  • Polo, I., , A. Lazar, , B. Rodriguez-Fonseca, , and S. Arnault, 2008: Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization. J. Geophys. Res., 113, C07009, doi:10.1029/2007JC004495.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., , H. H. Hendon, , M. C. Wheeler, , and O. Alves, 2011: Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., 2008: First and second baroclinic mode responses of the tropical Indian Ocean to interannual equatorial wind anomalies. J. Oceanogr., 64, 479494.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and F. Molteni, 2010: Simulation of the Madden-Julian Oscillation and its tele-connections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , R. Murtugudde, , P. Strutton, , and J.-L. Li, 2005: Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden-Julian Oscillation. Geophys. Res. Lett., 32, L23602, doi:10.1029/2005GL024300.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies—1975–1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., 1996: An ocean model code for array processor computers. Comput. Geosci., 22, 569578.

  • Webber, B. G. M., , A. J. Matthews, , and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 136, 740754.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., , A. J. Matthews, , K. J. Heywood, , and D. P. Stevens, 2012: Ocean Rossby waves as a triggering mechanism for primary Madden-Julian events. Quart. J. Roy. Meteor. Soc., 138, 514527, doi:10.1002/qj.936.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794.

  • Wunsch, C., , and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208.

  • Xie, S. P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 6
PDF Downloads 37 37 5

Dynamical Ocean Forcing of the Madden–Julian Oscillation at Lead Times of up to Five Months

View More View Less
  • 1 School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • | 2 School of Mathematics, University of East Anglia, Norwich, United Kingdom
  • | 3 School of Environmental Sciences, and School of Mathematics, University of East Anglia, Norwich, United Kingdom
  • | 4 School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
© Get Permissions
Restricted access

Abstract

The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.

Corresponding author address: Benjamin Webber, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. E-mail: b.webber@uea.ac.uk

Abstract

The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.

Corresponding author address: Benjamin Webber, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. E-mail: b.webber@uea.ac.uk
Save