• Anderberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Atlas, D., , and A. C. Chmela, 1957: Physical-synoptic variations of drop-size parameters. Preprints, Sixth Weather Radar Conf., Boston, MA, Amer. Meteor. Soc., 21–29.

  • Atlas, D., , and C. W. Ulbrich, 2000: An observationally based conceptual model of warm oceanic convective rain in the tropics. J. Appl. Meteor., 39, 21652181.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., , T. Iguchi, , and K. Okamoto, 2004: On rain type classification algorithm TRMM PR 2A23 V6. Proc. Second TRMM Int. Science Conf., Nara, Japan, JAXA, NICT, and NASA, 1.3.

  • Awaka, J., , T. Iguchi, , and K. Okamoto, 2007: Measuring Precipitation from Space: EURAINSAT and the Future. Springer, 748 pp.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Berg, W., , T. L’Ecuyer, , and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., , W. A. Petersen, , and D. J. Cecil, 2004: The tropical convective spectrum. Part I: Archetypal vertical structures. J. Climate, 18, 27442769.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., cited 2008: NASA’s modern era retrospective-analysis for research and applications: Integrating earth observations. Earthzine. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

  • Bringi, V. N., , V. Chandrasekhar, , J. Hubbert, , E. Gorgucci, , W. L. Randeu, , and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Brown, P. S., 1989: Coalescence and breakup-induced oscillations in the evolution of the raindrop size distribution. J. Atmos. Sci., 46, 11861192.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341.

  • Caine, S., , C. Jakob, , S. Siems, , and P. May, 2009: Objective classification of precipitating convective regimes using a weather radar in Darwin, Australia. Mon. Wea. Rev., 137, 15851600.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , R. Cifelli, , W. A. Petersen, , S. A. Rutledge, , and M. A. F. S. Dias, 2001: Characteristics of Amazonian rain measured during TRMM-LBA. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 12A.9. [Available online at http://ams.confex.com/ams/30radar/techprogram/paper_21229.htm.]

  • Elsaesser, G., , and C. Kummerow, 2008: Towards a fully parametric retrieval of the non-raining parameters over the global oceans. J. Appl. Meteor., 47, 15991618.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G., , C. Kummerow, , T. S. L’Ecuyer, , Y. N. Takayabu, , and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., , and T. Yanase, 1968: Raindrop zr relationships in different altitudes. Preprints, 13th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 380–383.

  • Gentemann, C. L., , F. Wentz, , C. Mears, , and D. Smith., 2004: In-situ validation of TRMM microwave sea surface temperatures. J. Geophys. Res., 109, C04021, doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Givati, A., , and D. Rosenfeld, 2005: Separation between cloud-seeding and air-pollution effects. J. Appl. Meteor., 44, 12981314.

  • Haddad, Z. S., , S. L. Durden, , and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35, 313.

  • Haynes, J. M., , T. S. L’Ecuyer, , G. L. Stephens, , S. D. Miller, , C. Mitrescu, , N. B. Wood, , and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., , and R. Srivastava, 1995: Evolution of the raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , J. Kwiatkowski, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., , T. Iguchi, , T. Kubota, , N. Yoshida, , S. Seto, , J. Kwiatkowski, , and Y. N. Takayabu, 2009: Feasibility of raindrop size distribution parameter estimation with TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 5366.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., , S. Ringerud, , J. Crook, , D. Randel, , and W. Berg, 2011: An observationally generated a-priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., , E. A. Smith, , Z. Haddad, , E. Im, , T. Iguchi, , and A. Mugnai, 2004: Mathematical–physical framework for retrieval of rain DSD properties from dual-frequency Ku-Ka-band satellite radar. J. Atmos. Sci., 61, 23492369.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , C. Kummerow, , and W. Berg, 2004: Toward a global map of raindrop size distributions. Part I: Rain-type classification and its implications for validating global rainfall products. J. Hydrometeor., 5, 831849.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , H. Masunaga, , and C. Kummerow, 2006: Variability in the characteristics of precipitation systems in the tropical Pacific. Part II: Implications for atmospheric heating. J. Climate, 19, 13881406.

    • Search Google Scholar
    • Export Citation
  • List, R., , T. B. Low, , N. Donaldson, , E. Freire, , and J. R. Gillespie, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44, 362372.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and E. J. Zipser, 2009: Warm rain in the tropics: Seasonal and regional distributions based on 9 years of TRMM data. J. Climate, 22, 767779.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • Meneghini, R., , T. Iguchi, , T. Kozu, , L. Liao, , K. Okamoto, , J. A. Jones, , and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estiamtes from the TRMM radar. J. Appl. Meteor., 39, 20532070.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., , and C. D. Kummerow, 2011: A modular optimal estimation method for combined radar–radiometer precipitation profiling. J. Appl. Meteor. Climatol., 50, 433448.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and A. P. Barros, 2007: Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci., 10, 145152.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.

  • Rosenfeld, D., , and C. W. Ulbrich, 2003: Cloud microphysical properties, processes and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

  • Sempere-Torres, D., , J. M. Porrà, , and J.-D. Creutin, 1998: Experimental evidence of a general description for raindrop size distribution properties. J. Geophys. Res., 103 (D2), 17851797.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , T. Watanabe, , H. Sasaki, , T. Kubota, , S. Kida, , and K. Okamoto, 2008: Validation of western and eastern Pacific rainfall estimates from the TRMM PR using a radiative transfer model. J. Geophys. Res., 113, D15116, doi:10.1029/2007JD009002.

    • Search Google Scholar
    • Export Citation
  • Shimizu, S., , R. Oki, , T. Tagawa, , T. Iguchi, , and M. Hirose, 2009: Effects of the orbit boost of the TRMM satellite on PR rain estimates. J. Meteor. Soc. Japan, 87A, 8392.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317326.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , J. A. Smith, , and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The Cloudsat mission and the A-train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Takemura, T., , H. Okamoto, , Y. Maruyama, , A. Numaguti, , A. Higurashi, , and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17 85317 873.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , S. Oury, , R. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 16711687.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , D. B. Wolff, , K. R. Wolff, , and P. Bashor, 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , J. A. Smith, , and M. Steiner, 2003: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the drop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , G. G. Carri, , W. R. Cotton, , P. J. Demott, , and A. J. Prenni, 2006: Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078.

  • Wilheit, T. T., , V. Chandrasekhar, , and W. Li, 2007: Impact of uncertainty in the drop size distribution on oceanic rainfall retrievals from passive microwave observations. IEEE Trans. Geosci. Remote Sens., 45, 31603164.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., , W. L. Ecklund, , and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 9961012.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649.

    • Search Google Scholar
    • Export Citation
  • Xu, X., , K. Howard, , and J. Zhang, 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., , W. Szyrmer, , C. Bell, , and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053722.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 9
PDF Downloads 46 46 10

Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMM

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Raindrop size distribution (DSD) retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar–radiometer algorithm over the oceans equatorward of 35° are examined for relationships with variables describing properties of the vertical precipitation profile, mesoscale organization, and background environment. In general, higher freezing levels and relative humidities (tropical environments) are associated with smaller reflectivity-normalized median drop size (ϵDSD) than in the extratropics. Within the tropics, the smallest ϵDSD values are found in large, shallow convective systems where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest ϵDSD values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. These relationships are formally attributed to variables describing the large-scale environment, mesoscale organization, and profile characteristics via principal component (PC) analysis. The leading three PCs account for 23% of the variance in ϵDSD at the individual profile level and 45% of the variance in 1°-gridded mean values. The geographical distribution of ϵDSD is consistent with many of the observed regional reflectivity–rainfall (ZR) relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, midlatitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Ocean intertropical convergence zone.

Corresponding author address: Dr. S. Joseph Munchak, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. E-mail: s.j.munchak@nasa.gov

Abstract

Raindrop size distribution (DSD) retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar–radiometer algorithm over the oceans equatorward of 35° are examined for relationships with variables describing properties of the vertical precipitation profile, mesoscale organization, and background environment. In general, higher freezing levels and relative humidities (tropical environments) are associated with smaller reflectivity-normalized median drop size (ϵDSD) than in the extratropics. Within the tropics, the smallest ϵDSD values are found in large, shallow convective systems where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest ϵDSD values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. These relationships are formally attributed to variables describing the large-scale environment, mesoscale organization, and profile characteristics via principal component (PC) analysis. The leading three PCs account for 23% of the variance in ϵDSD at the individual profile level and 45% of the variance in 1°-gridded mean values. The geographical distribution of ϵDSD is consistent with many of the observed regional reflectivity–rainfall (ZR) relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, midlatitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Ocean intertropical convergence zone.

Corresponding author address: Dr. S. Joseph Munchak, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. E-mail: s.j.munchak@nasa.gov
Save