• Bengtsson, L., , K. Hodges, , M. Esch, , North Keenlyside, , L. Kornblueh, , J.-J. Luo, , and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate. Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., , A. Sobel, , A. G. Barnston, , and K. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Chan, J., , and K. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., , and J.-F. Royer, 2010: Role of the SST anomaly structures in response of cyclogenesis to global warming. Hurricanes and Climate Change, J. B. Elsner and T. H. Jagger, Eds., Springer, 39–52.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., , J.-F. Royer, , and M. Deque, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-CLIMAT at high resolution. Climate Dyn., 27, 377399.

    • Search Google Scholar
    • Export Citation
  • Chia, H., , and C. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • Chiang, J., , and A. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631.

    • Search Google Scholar
    • Export Citation
  • Copsey, D., , R. Sutton, , and J. Knight, 2006: Recent trends in sea level pressure in the Indian Ocean region. Geophys. Res. Lett., 33, L19712, doi:10.1029/2006GL027175.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , J. Knaff, , and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2005: Limitations of time-slice experiments for predicting regional climate change over South Asia. Climate Dyn., 24, 373391.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., , M. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155.

  • Emanuel, K., 2008: The hurricanes–climate connection. Bull. Amer. Meteor. Soc., 89, ES10ES20.

  • Emanuel, K., , and D. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/pdfpapers/75463.pdf.]

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Held, I. M., , and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS)–Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., , J. Sirutis, , S. Garner, , G. Vecchi, , and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • LaRow, T., , Y.-K. Lim, , D. Shin, , E. Chassignet, , and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102.

  • Li, T., , M. Kwon, , M. Zhao, , J.-S. Kug, , J.-J. Luo, , and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.

    • Search Google Scholar
    • Export Citation
  • McDonald, R., , D. Bleaken, , D. Creswell, , V. Pope, , and C. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impact of climate change. Climate Dyn., 25, 1936.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. Mitchell, , R. Stouffer, , and K. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., doi:10.1007/s00382-011-1223-x, in press.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578.

  • Rayner, R., , D. Parker, , E. Horton, , C. Folland, , L. Alexander, , D. Rowel, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407,doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., , F. Chauvin, , B. Timbal, , P. Araspin, , and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , I. Held, , and C. Bretherton, 2002: The ENSO signal in tropospheric temperature. J. Climate, 15, 27022706.

  • Sugi, M., , A. Noda, , and North Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661071, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Vecchi, G. A., , M. Zhao, , H. Wang, , G. Villarini, , A. Rosati, , A. Kumar, , I. M. Held, , and R. Gudgel, 2011: Statistical-dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , M. Zhao, , and J. A. Smith, 2011: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM—Impacts of SST warming and CO2 increase. SOLA, 1, 133136.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , M. Sugi, , and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 426 78
PDF Downloads 75 75 22

TC-Permitting GCM Simulations of Hurricane Frequency Response to Sea Surface Temperature Anomalies Projected for the Late-Twenty-First Century

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.

Corresponding author address: Dr. Ming Zhao, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: ming.zhao@noaa.gov

Abstract

A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.

Corresponding author address: Dr. Ming Zhao, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: ming.zhao@noaa.gov
Save