• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , K. Hamilton, , and K. R. Sperber, 2007: South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , S. Levitus, , T. P. Boyer, , M. E. Conkright, , T. D. O’Brien, , and C. Stephens, 1998: Temperature of the Atlantic Ocean. Vol. 1, World Ocean Atlas 1998, NOAA Atlas NESDIS 27, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , M. Scheinert, , J. Dengg, , A. Biastoch, , and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , M. E. Conkright, , T. D. O’Brien, , and C. Stephens, 1998: Salinity of the Atlantic Ocean. Vol. 4, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., , R. Tomas, , J. M. Dennis, , D. B. Chelton, , N. G. Loeb, , and J. L. McClean, 2010: Frontal-scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , A. Wittenberg, , and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298.

    • Search Google Scholar
    • Export Citation
  • Colella, P., , and P. R. Woodward, 1984: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24, 89104.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , S. G. Alderson, , B. A. King, , and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , W. G. Large, , and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P., , A. Clement, , and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91, doi:10.1029/2010EO160001.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , T. L. Delworth, , A. J. Rosati, , S. M. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, doi:10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., , and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28, 195198.

  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , S. G. Yeager, , R. B. Neale, , S. Levis, , and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , and R. J. Stouffer, 2006: Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys. Res. Lett., 33, L22701, doi:10.1029/2006GL028098.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 Global Coupled Climate Models. Part II: The baseline ocean simulation. J. Climate, 19, 675697.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2010: Elements of MOM4P1. GFDL Ocean Group Tech. Rep. 6, NOAA/Geophysical Fluid Dynamics Laboratory, 444 pp. [Available online at http://www.gfdl.noaa.gov/fms.]

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579.

  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , A. Wittenberg, , A. Fedorov, , M. Collins, , C. Wang, , A. Capotondi, , G. J. van Oldenborgh, , and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Held, I. M., , T. L. Delworth, , J. Lu, , K. Findell, , and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867.

  • Huynh, H. T., 1996: Schemes and constraints for advection. Fifteenth International Conference on Numerical Methods in Fluid Dynamics, P. Kutler, J. Flores, and J.-J. Chattot, Eds., Lecture Notes in Physics, Vol. 490, Springer, 498–503.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanzow, T., and Coauthors, 2010: Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Climate, 23, 56785698.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , J.-S. Kug, , I.-S. Kang, , F.-F. Jin, , and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10, 16901704.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., , J. Grieser, , C. Beck, , B. Rudolf, , and F. Rubel, 2006: World map of the Koppen climate classification updated. Meteor. Z., 15, 259263.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , J. Choi, , S.-I. An, , F.-F. Jin, , and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Climate, 23, 12261239.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., , A. Rosati, , and M. J. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the North Atlantic. Ocean Modell., 11, 467477.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., , F. Nadal, , and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bruan, 1991: Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818.

    • Search Google Scholar
    • Export Citation
  • Martin, T, , and A. Adcroft, 2010: Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modell., 34, 111124, doi:10.1016/j.ocemod.2010.05.001.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., and Coauthors, 2011: A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modell., 39, 1030, doi:10.1016/j.ocemod.2011.02.011.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3, 283299.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Science, 452, 206209, doi:10.1038/Nature06690.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273.

  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838.

  • Perovich, D., , T. C. Grenfell, , B. Light, , and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M, ., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578.

  • Rajeevan, M., , and R. S. Nanjundiah, 2009: Coupled model simulations of twentieth century climate of the Indian summer monsoon. Current Trends in Science: Platinum Jubilee Special, N. Mukunda, Ed., Indian Academy of Sciences, 537–568.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: U.K. HiGEM: The new U.K. High-Resolution Global Environment Model—Model description and basic evaluation. J. Climate, 22, 18611896.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , R. Morfley, , and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531.

  • Winton, M., , R. W. Hallberg, , and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , T. L. Delworth, , A. Rosati, , W. G. Anderson, , K. W. Dixon, , H.-C. Lee, , and F. Zeng, 2011: Sensitivity of the North Atlantic Ocean circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J. Geophys. Res., 116, C12024, doi:10.1029/2011JC007240.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 683 683 121
PDF Downloads 275 275 56

Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 Princeton University, Princeton, New Jersey
  • | 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 4 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and High Performance Technologies, Inc., Reston, Virginia
  • | 5 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.

Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.

Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an improved simulation of ENSO. Regional precipitation features are much improved. The Indian monsoon and Amazonian rainfall are also substantially more realistic in CM2.5.

The response of CM2.5 to a doubling of atmospheric CO2 has many features in common with CM2.1, with some notable differences. For example, rainfall changes over the Mediterranean appear to be tightly linked to topography in CM2.5, in contrast to CM2.1 where the response is more spatially homogeneous. In addition, in CM2.5 the near-surface ocean warms substantially in the high latitudes of the Southern Ocean, in contrast to simulations using CM2.1.

Retired.

Corresponding author address: Thomas L. Delworth, NOAA/GFDL, P.O. Box 308, Princeton University, Princeton, NJ 08542. E-mail: tom.delworth@noaa.gov

Abstract

The authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.

Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.

Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an improved simulation of ENSO. Regional precipitation features are much improved. The Indian monsoon and Amazonian rainfall are also substantially more realistic in CM2.5.

The response of CM2.5 to a doubling of atmospheric CO2 has many features in common with CM2.1, with some notable differences. For example, rainfall changes over the Mediterranean appear to be tightly linked to topography in CM2.5, in contrast to CM2.1 where the response is more spatially homogeneous. In addition, in CM2.5 the near-surface ocean warms substantially in the high latitudes of the Southern Ocean, in contrast to simulations using CM2.1.

Retired.

Corresponding author address: Thomas L. Delworth, NOAA/GFDL, P.O. Box 308, Princeton University, Princeton, NJ 08542. E-mail: tom.delworth@noaa.gov
Save