• Anderson, B. E., and Coauthors, 1996: Airborne observations of spatial and temporal variability of tropospheric carbon dioxide. J. Geophys. Res., 101 (D1), 19851997.

    • Search Google Scholar
    • Export Citation
  • Boering, K. A., , S. C. Wofsy, , B. C. Daube, , H. R. Schneider, , M. Loewenstein, , J. R. Podolske, , and T. J. Conway, 1996: Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science, 274, 13401343.

    • Search Google Scholar
    • Export Citation
  • Brindley, H. E., , A. J. Geer, , and J. E. Harries, 1999: Climate variability and trends in SSU radiances: A comparison of model predictions and satellite observations in the middle stratosphere. J. Climate, 12, 31973219.

    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., , J. Nash, , G. Vaughan, , and C. F. Rogers, 1985: Solar tides in the middle atmosphere. I: Description of satellite observations and comparison with theoretical calculations at equinox. Quart. J. Roy. Meteor. Soc., 111, 677689.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2008: Satellite remote sounding of mid-tropospheric CO2. Geophys. Res. Lett., 35, L17807, doi:10.1029/2008GL035022.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , Y. Han, , Q. Liu, , P. V. Delst, , and F. Weng, 2011: Community radiative transfer model for Stratospheric Sounding Unit. J. Atmos. Oceanic Technol., 28, 767778.

    • Search Google Scholar
    • Export Citation
  • Dackson, D. L., , and B. J. Soden, 2007: Detection and correction of diurnal sampling bias in HIRS/2 brightness temperatures. J. Atmos. Oceanic Technol., 24, 14251438.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Solomon, , and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , S. T. Rumbold, , and K. P. Shine, 2009: Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J. Atmos. Sci., 66, 24022417.

    • Search Google Scholar
    • Export Citation
  • Han, Y., , P. van Delst, , Q. Liu, , F. Weng, , B. Yan, , R. Treadon, , and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM) - version 1. NOAA Tech. Rep. NESDIS 122, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Kidwell, K. B., cited 1998: NOAA Polar Orbiter data user’s guide. [Available online at http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/index.htm.]

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., , M. Matricardi, , D. Dee, , and S. Uppala, 2009: Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A. Quart. J. Roy. Meteor. Soc., 135, 20862099.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., , S. A. Klein, , and D. J. Seidel, 2003: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison. J. Climate, 16, 241262.

    • Search Google Scholar
    • Export Citation
  • Lin, P., , Q. Fu, , S. Solomon, , and J. M. Wallace, 2009: Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. J. Climate, 22, 63256341.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Chapman, 1969: Atmospheric tides. Space Sci. Rev., 10, 3188.

  • Liu, Q., , and F. Weng, 2009: Recent stratospheric temperature observed from satellite measurements. SOLA, 5, 5356, doi:10.2151/sola.2009-014.

    • Search Google Scholar
    • Export Citation
  • Long, C., , S. Zhou, , S.-K. Yang, , and A. Butler, cited 2009: Preliminary evaluation of the upper atmosphere in the CFS Reanalysis. [Available online at http://met.nps.edu/climate_CDPW09/documents/POSTERS/P1.20_Long_34th_CDPW_Oct09.pdf.]

    • Search Google Scholar
    • Export Citation
  • Masarie, K. A., , and P. P. Tans, 1995: Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res., 100, 11 59311 610.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , M. C. Schabel, , and F. J. Wentz, 2003: A reanalysis of the MSU channel-2 tropospheric temperature record. J. Climate, 16, 36503664.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., , J. L. Brownscombe, , G. P. Carruthers, , D. R. Pick, , and K. H. Stewart, 1980: Operational temperature sounding of the stratosphere. Philos. Trans. Roy. Soc. London, 296, 6571.

    • Search Google Scholar
    • Export Citation
  • Nash, J., 1988: Extension of explicit radiance observations by the Stratospheric Sounding Unit into the lower stratosphere and lower mesosphere. Quart. J. Roy. Meteor. Soc., 114, 11531171.

    • Search Google Scholar
    • Export Citation
  • Nash, J., , and J. L. Brownscombe, 1983: Validation of the Stratospheric Sounding Unit. Adv. Space Res., 2, 5962.

  • Nash, J., , and G. F. Forrester, 1986: Long-term monitoring of stratospheric temperature trends using radiance measurements obtained by the TIROS-N series of NOAA spacecraft. Adv. Space Res., 6, 3744.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122.

  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA—NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , J. S. Boyle, , D. J. Gaffen, , J. J. Hnilo, , D. Nychka, , D. E. Parker, , and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , M. Free, , and J. Wang, 2005: Diurnal cycle of upper air temperature estimated from radiosondes. J. Geophys. Res., 110, D09102, doi:10.1029/2004JD005526.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , N. P. Gillett, , J. R. Lanzante, , K. P. Shine, , and P. W. Thorne, 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev.: Climate Change, 2, 592616, doi:10.1002/wcc.125.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., , J. J. Barnett, , and W. J. Randel, 2008: Temperature trends derived from stratospheric sounding unit radiances: The effect of increasing CO2 on the weighting function, 441. Geophys. Res. Lett., 35, L02710, doi:10.1029/2007GL032218.

    • Search Google Scholar
    • Export Citation
  • Strow, L., , S. Hannon, , D. Tobin, , and H. Revercomb, 2008: Inter-calibration of the AIRS and IASI operational infrared sensors. Proc. 17th Annual Conf. on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, UT, Utah State University Research Foundation, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2005: Recent stratospheric climate trends as evidenced in radiosonde data: Global structure and tropospheric linkages. J. Climate, 18, 47854795.

    • Search Google Scholar
    • Export Citation
  • Thoning, K. W., , P. P. Tans, , and W. D. Komhyr, 1989: Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res., 94, 85498565.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , X. Wu, , M. Goldberg, , C. Cao, , Y. Li, , and S.-H. Sohn, 2010: Comparison of AIRS and IASI radiances using GOES imagers as transfer radiometers toward climate data records. J. Appl. Meteor. Climatol., 49, 478492.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1988: Report of the International Ozone Trends Panel 1988. Global Ozone Research Monitoring Project Rep. 19, 829 pp.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2007: Scientific assessment of ozone depletion: 2006. Global Ozone Research Monitoring Project Rep. 50, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Young, P. J., , S. Solomon, , D. W. J. Thompson, , K. H. Rosenlof, , and J.-F. Lamarque, 2011: The seasonal cycle and interannual variability in stratospheric temperatures and links to the Brewer–Dobson circulation: An analysis of MSU and SSU data. J. Climate, 24, 62436258.

    • Search Google Scholar
    • Export Citation
  • Young, P. J., , S. Solomon, , D. W. J. Thompson, , S. C. Sherwood, , K. H. Rosenlof, , Q. Fu, , and J.-F. Lamarque, 2012: Changes in stratospheric temperatures and their implications for changes in the Brewer–Dobson circulation, 1979–2005. J. Climate, 25, 17591772.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , and W. Wang, 2010: Stability of the MSU-derived atmospheric temperature trend. J. Atmos. Oceanic Technol., 27, 19601971.

  • Zou, C.-Z., , M. Gao, , and M. Goldberg, 2009: Error structure and atmospheric temperature trends in observations of the Microwave Sounding Unit. J. Climate, 22, 16611681.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 8
PDF Downloads 21 21 3

Construction of Stratospheric Temperature Data Records from Stratospheric Sounding Units

View More View Less
  • 1 Dell Services Federal Government, Fairfax, Virginia
  • | 2 NOAA/NESDIS/STAR, Camp Springs, Maryland
  • | 3 I.M. Systems Group, Inc., Rockville, Maryland
© Get Permissions
Restricted access

Abstract

In recognizing the importance of Stratospheric Sounding Unit (SSU) onboard historical NOAA polar-orbiting satellites in assessment of long-term stratospheric temperature changes and limitations in previous available SSU datasets, this study constructs a fully documented, publicly accessible, and well-merged SSU time series for climate change investigations. Focusing on methodologies, this study describes the details of data processing and bias corrections in the SSU observations for generating consistent stratospheric temperature data records, including 1) removal of the instrument gas leak effect in its CO2 cell; 2) correction of the atmospheric CO2 increase effect; 3) adjustment for different observation viewing angles; 4) removal of diurnal sampling biases due to satellite orbital drift; and 5) statistical merging of SSU observations from different satellites. After reprocessing, the stratospheric temperature records are composed of nadirlike, gridded brightness temperatures that correspond to identical weighting functions and a fixed local observation time. The 27-yr reprocessed SSU data record comprises global monthly and pentad layer temperatures, with grid resolution of 2.5° latitude by 2.5° longitude, of the midstratosphere (TMS), upper stratosphere (TUS), and top stratosphere (TTS), which correspond to the three SSU channel observations. For 1979–2006, the global mean trends for TMS, TUS, and TTS, are respectively −1.236 ± 0.131, −0.926 ± 0.139, and −1.006 ± 0.194 K decade−1. Spatial trend pattern analyses indicated that this cooling occurred globally with larger cooling over the tropical stratosphere.

Corresponding author address: Dr. Cheng-Zhi Zou, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Science Center, Room 712, 5200 Auth Road, Camp Springs, MD 20746. E-mail: cheng-zhi.zou@noaa.gov

Abstract

In recognizing the importance of Stratospheric Sounding Unit (SSU) onboard historical NOAA polar-orbiting satellites in assessment of long-term stratospheric temperature changes and limitations in previous available SSU datasets, this study constructs a fully documented, publicly accessible, and well-merged SSU time series for climate change investigations. Focusing on methodologies, this study describes the details of data processing and bias corrections in the SSU observations for generating consistent stratospheric temperature data records, including 1) removal of the instrument gas leak effect in its CO2 cell; 2) correction of the atmospheric CO2 increase effect; 3) adjustment for different observation viewing angles; 4) removal of diurnal sampling biases due to satellite orbital drift; and 5) statistical merging of SSU observations from different satellites. After reprocessing, the stratospheric temperature records are composed of nadirlike, gridded brightness temperatures that correspond to identical weighting functions and a fixed local observation time. The 27-yr reprocessed SSU data record comprises global monthly and pentad layer temperatures, with grid resolution of 2.5° latitude by 2.5° longitude, of the midstratosphere (TMS), upper stratosphere (TUS), and top stratosphere (TTS), which correspond to the three SSU channel observations. For 1979–2006, the global mean trends for TMS, TUS, and TTS, are respectively −1.236 ± 0.131, −0.926 ± 0.139, and −1.006 ± 0.194 K decade−1. Spatial trend pattern analyses indicated that this cooling occurred globally with larger cooling over the tropical stratosphere.

Corresponding author address: Dr. Cheng-Zhi Zou, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Science Center, Room 712, 5200 Auth Road, Camp Springs, MD 20746. E-mail: cheng-zhi.zou@noaa.gov
Save