• Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, cited 2009: Geoengineering the climate system: A policy statement of the American Meteorological Society. [Available online at http://www.ametsoc.org/policy/2009geoengineeringclimate_amsstatement.html.]

  • Ammann, C. M., , W. M. Washington, , G. A. Meehl, , L. Buja, , and H. Teng, 2010: Climate engineering through artificial enhancement of natural forcings: Magnitudes and implied consequences. J. Geophys. Res., 115, D22109, doi:10.1029/2009JD012878.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., , and G. H. Roe, 2011: Climate commitment in an uncertain world. Geophys. Res. Lett., 38, L01707, doi:10.1029/2010GL045850.

    • Search Google Scholar
    • Export Citation
  • Bala, G., , P. B. Duffy, , and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 76647669.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and R. L. Naylor, 2009: Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240244.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., 2008: Some aspects of uncertainty in predicting sea ice thinning. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 63–76.

  • Bitz, C. M., , P. R. Gent, , R. A. Woodgate, , M. M. Holland, , and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19, 24372450.

    • Search Google Scholar
    • Export Citation
  • Blackstock, J. J., and Coauthors, 2009: Climate engineering responses to climate emergencies. The Novim Group Rep., 56 pp. [Available online at http://arxiv.org/ftp/arxiv/papers/0907/0907.5140.pdf.]

  • Brovkin, V., , V. Petoukhov, , M. Claussen, , E. Bauer, , D. Archer, , and C. Jaeger, 2009: Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change, 92, 243259.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., , C. R. Wilson, , D. Blankenship, , and B. D. Tapley, 2009: Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2, 859862, doi:10.1038/ngeo694.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222143.

  • DeWeaver, E., 2007: Uncertainty in climate model projections of Arctic sea ice decline: An evaluation relevant to polar bears. USGS Administrative Rep., 40 pp. [Available online at http://www.usgs.gov/newsroom/special/polar_bears/docs/USGS_PolarBear_DeWeaver_GCM-Uncertainty.pdf.]

  • Ding, Q., , E. J. Steig, , D. S. Battisti, , and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., , and K. Caldeira, 2000: Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 21412144.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., , K. Caldeira, , and P. B. Duffy, 2003: Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Global Planet. Change, 37, 157168.

    • Search Google Scholar
    • Export Citation
  • Grebmeier, J. M., and Coauthors, 2006: A major ecosystem shift in the northern Bering Sea. Science, 311, 14611464.

  • Hansen, J., and Coauthors, 2007: Dangerous human-made interference with climate: A GISS Model-E study. Atmos. Chem. Phys., 7, 22872312.

    • Search Google Scholar
    • Export Citation
  • Hare, B., , and M. Meinshausen, 2006: How much warming are we committed to and how much can be avoided? Climatic Change, 75, 111149.

  • Heckendorn, P., , D. Weisenstein, , S. Fueglistaler, , B. Luo, , E. Rozanov, , M. Schraner, , L. Thomason, , and T. Peter, 2009: The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett., 4, 045108, doi:10.1088/1748-9326/4/4/045108.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., , and S. Solomon, 2009: Risks of climate engineering. Science, 325, 955956.

  • Hinzman, L., and Coauthors, 2005: Evidence and implications of recent climate change in Northern Alaska and other arctic regions. Climatic Change, 72, 251298.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Holland, M. M., , C. M. Bitz, , and A. J. Weaver, 2001: The influence of sea ice physics on simulations of climate change. J. Geophys. Res., 106, 19 63919 655, doi:10.1029/2000JC000651.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , E. C. Hunke, , W. H. Lipscomb, , and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., , P. Dutrieux, , S. S. Jacobs, , S. D. McPhail, , J. R. Perrett, , A. T. Webb, , and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, doi:10.1038/ngeo890.

    • Search Google Scholar
    • Export Citation
  • Jones, A., , J. Haywood, , O. Boucher, , B. Kravitz, , and A. Robock, 2010: Geoengineering by stratospheric SO2 injection: Results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies Model-E. Atmos. Chem. Phys. Discuss., 10, 74217434.

    • Search Google Scholar
    • Export Citation
  • Keith, D. W., , E. Parson, , and M. G. Morgan, 2010: Research on global sun block needed now. Nature, 463, 426427, doi:10.1038/463426a.

  • Knutti, R., , and G. C. Hegerl, 2008: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat. Geosci., 1, 735743, doi:10.1038/ngeo337.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., , A. Robock, , O. Boucher, , H. Schmidt, , K. E. Taylor, , G. Stenchikov, , and M. Schulz, 2011: The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett., 12, 162167, doi:10.1002/asl.316.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , A. G. Slater, , R. A. Tomas, , M. M. Holland, , and C. Deser, 2008: Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35, L11506, doi:10.1029/2008GL033985.

    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., , A. Ridgwell, , P. J. Valdes, , and A. Seale, 2008: Sunshade world: A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett., 35, L12710, doi:10.1029/2008GL033674.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , and K. Caldeira, 2007: Transient climate carbon simulations of planetary geoengineering. Proc. Natl. Acad. Sci. USA, 104, 99499954.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , and K. Caldeira, 2008: Stabilizing climate requires near-zero emissions. Geophys. Res. Lett., 35, L04705, doi:10.1029/2007GL032388.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Moore, S. E., , and H. P. Huntington, 2008: Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl., 18, S157S165.

    • Search Google Scholar
    • Export Citation
  • Notz, D., 2009: The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proc. Natl. Acad. Sci. USA, 106, 20 59020 595.

    • Search Google Scholar
    • Export Citation
  • Oppenheimer, M., 1998: Global warming and the stability of the West Antarctic Ice Sheet. Nature, 393, 325332, doi:10.1038/30661.

  • Pierce, J. R., , D. K. Weisenstein, , P. Heckendorn, , T. Peter, , and D. W. Keith, 2010: Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys. Res. Lett., 37, L18805, doi:10.1029/2010GL043975.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , and Y. Feng, 2008: On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead. Proc. Natl. Acad. Sci. USA, 105, 14 24514 250.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rasch, P. J., , P. J. Crutzen, , and D. B. Coleman, 2008a: Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophys. Res. Lett., 35, L02809, doi:10.1029/2007GL032179.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., , S. Tilmes, , R. P. Turco, , A. Robock, , L. Oman, , C.-C. Chen, , G. L. Stenchikov, , and R. R. Garcia, 2008b: An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. Roy. Soc., 366A, 40074037, doi:10.1098/rsta.2008.0131.

    • Search Google Scholar
    • Export Citation
  • Regehr, E. V., , C. M. Hunter, , H. Caswell, , S. C. Amstrup, , and I. Stirling, 2010: Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. J. Anim. Ecol., 79, 117127.

    • Search Google Scholar
    • Export Citation
  • Ricke, K. L., , M. G. Morgan, , and M. R. Allen, 2010: Regional climate response to solar-radiation management. Nat. Geosci., 3, 537541, doi:10.1038/ngeo915.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219.

  • Robock, A., , L. Oman, , and G. L. Stenchikov, 2008: Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.

    • Search Google Scholar
    • Export Citation
  • Robock, A., , A. Marquardt, , B. Kravitz, , and G. Stenchikov, 2009: Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett., 36, L19703, doi:10.1029/2009GL039209.

    • Search Google Scholar
    • Export Citation
  • Robock, A., , M. Bunzl, , B. Kravitz, , and G. L. Stenchikov, 2010: A test for geoengineering? Science, 327, 530531.

  • Roe, G. H., , and M. B. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318, 629632.

  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J., , and S. Rayner, 2009: Geoengineering the climate: Science, governance, and uncertainty. The Royal Society Policy Doc. 10/09 RS1636, 82 pp.

  • Shindell, D. T., , G. A. Schmidt, , M. E. Mann, , and G. Faluvegi, 2004: Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res., 109, D05104, doi:10.1029/2003JD004151.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , G.-K. Plattner, , R. Knutti, , and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106, 17041709.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., , D. P. Schneider, , S. D. Rutherford, , M. E. Mann, , J. C. Comiso, , and D. T. Shindell, 2009: Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, doi:10.1038/nature07669.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , A. Robock, , V. Ramaswamy, , M. D. Schwarzkopf, , K. Hamilton, , and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090.

    • Search Google Scholar
    • Export Citation
  • Tewksbury, J. J., , R. B. Huey, , and C. A. Deutsch, 2008: ECOLOGY: Putting the heat on tropical animals. Science, 320, 12961297.

  • Thoma, M., , A. Jenkins, , D. Holland, , and S. Jacobs, 2008: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Search Google Scholar
    • Export Citation
  • Tilmes, S., , R. Muller, , and R. Salawitch, 2008: The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science, 320, 12011204.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 311 61
PDF Downloads 254 254 49

The Climate Response to Stratospheric Sulfate Injections and Implications for Addressing Climate Emergencies

View More View Less
  • 1 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Stratospheric sulfate aerosol injection has been proposed to counteract anthropogenic greenhouse gas warming and prevent regional climate emergencies. Global warming is projected to be largest in the polar regions, where consequences to climate change could be emergent, but where the climate response to global warming is also most uncertain. The Community Climate System Model, version 3, is used to evaluate simulations with enhanced CO2 and prescribed stratospheric sulfate to investigate the effects on regional climate. To further explore the sensitivity of these regions to ocean dynamics, a suite of simulations with and without ocean dynamics is run.

The authors find that, when global average warming is roughly canceled by aerosols, temperature changes in the polar regions are still 20%–50% of the changes in a warmed world. Atmospheric circulation anomalies are also not canceled, which affects the regional climate response. It is also found that agreement between simulations with and without ocean dynamics is poorest in the high latitudes. The polar climate is determined by processes that are highly parameterized in climate models. Thus, one should expect that the projected climate response to geoengineering will be at least as uncertain in these regions as it is to increasing greenhouse gases. In the context of climate emergencies, such as melting arctic sea ice and polar ice sheets and a food crisis due to a heated tropics, the authors find that, while it may be possible to avoid tropical climate crises, preventing polar climate emergencies is not certain. A coordinated effort across modeling centers is required to generate a more robust depiction of a geoengineered climate.

Corresponding author address: Kelly McCusker, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195. E-mail: kelly@atmos.washington.edu

Abstract

Stratospheric sulfate aerosol injection has been proposed to counteract anthropogenic greenhouse gas warming and prevent regional climate emergencies. Global warming is projected to be largest in the polar regions, where consequences to climate change could be emergent, but where the climate response to global warming is also most uncertain. The Community Climate System Model, version 3, is used to evaluate simulations with enhanced CO2 and prescribed stratospheric sulfate to investigate the effects on regional climate. To further explore the sensitivity of these regions to ocean dynamics, a suite of simulations with and without ocean dynamics is run.

The authors find that, when global average warming is roughly canceled by aerosols, temperature changes in the polar regions are still 20%–50% of the changes in a warmed world. Atmospheric circulation anomalies are also not canceled, which affects the regional climate response. It is also found that agreement between simulations with and without ocean dynamics is poorest in the high latitudes. The polar climate is determined by processes that are highly parameterized in climate models. Thus, one should expect that the projected climate response to geoengineering will be at least as uncertain in these regions as it is to increasing greenhouse gases. In the context of climate emergencies, such as melting arctic sea ice and polar ice sheets and a food crisis due to a heated tropics, the authors find that, while it may be possible to avoid tropical climate crises, preventing polar climate emergencies is not certain. A coordinated effort across modeling centers is required to generate a more robust depiction of a geoengineered climate.

Corresponding author address: Kelly McCusker, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195. E-mail: kelly@atmos.washington.edu
Save