• Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Allen, M., , and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Allen, M., , D. Frame, , C. Huntingford, , C. Jones, , J. Lowe, , M. Meinshausen, , and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 11631166.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., , P. M. Forster, , and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570.

  • Andrews, T., , P. M. Forster, , O. Boucher, , N. Bellouin, , and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Search Google Scholar
    • Export Citation
  • Bala, G., , K. Caldeira, , and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Search Google Scholar
    • Export Citation
  • Betts, R., , P. Cox, , M. Collins, , P. Harris, , C. Huntingford, , and C. Jones, 2004: The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157175.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., , J. Kennedy, , I. Harris, , S. Tett, , and P. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , M. Collins, , P. P. Harris, , C. Huntingford, , and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156, doi:10.1007/s00704-004-0049-4.

    • Search Google Scholar
    • Export Citation
  • Dessai, S., , X. Lu, , and M. Hulme, 2005: Limited sensitivity analysis of regional climate change probabilities for the 21st century. J. Geophys. Res., 110, D19108, doi:10.1029/2005JD005919.

    • Search Google Scholar
    • Export Citation
  • Domingues, C., , J. Church, , N. White, , P. Gleckler, , S. Wijffels, , P. Barker, , and J. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , J. Gregory, , and R. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., , and K. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19, 61816194.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., , M. Meinshausen, , T. von Deimling, , T. Andrews, , and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., , S. Sain, , D. Nychka, , and G. Meehl, 2007: Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat., 14, 249266.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2008: A simple equation for regional climate change and associated uncertainty. J. Climate, 21, 15891604.

  • Giorgi, F., , and X. Bi, 2005: Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett., 32, L21715, doi:10.1029/2005GL024288.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., , and P. Huybrechts, 2006: Ice-sheet contributions to future sea-level change. Philos. Trans. Roy. Soc., A364, 17091732.

  • Harris, G., , M. Collins, , D. Sexton, , J. Murphy, , and B. Booth, 2010: Probabilistic projections for 21st century European climate. Nat. Hazards Earth Syst. Sci., 10, 20092020.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., , T. Wigley, , E. Barrow, , S. Raper, , A. Centella, , S. Smith, , and A. Chipanshi, 2000: Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: MAGICC and SCENGEN Version 2.4 Workbook. Climatic Research Unit, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., , and P. Cox, 2000: An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dyn., 16, 575586.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., , and A. Scaife, 2008: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236.

  • Jones, A., and Coauthors, 2009: Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos. Chem. Phys., 9, 60556075.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., , and M. J. Webb, 2008: Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett., 35, L16706, doi:10.1029/2008GL034838.

    • Search Google Scholar
    • Export Citation
  • Mearns, L., and Coauthors, 2001: Climate scenario development. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 739–768.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. Mitchell, , R. Stouffer, , and K. Taylor, 2007b: The WCRP CMIP3 multimodel dataset. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., , N. Meinshausen, , W. Hare, , S. Raper, , K. Frieler, , R. Knutti, , D. Frame, , and M. Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 11581162.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., , S. Raper, , and T. Wigley, 2011: Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos. Chem. Phys., 11, 14171456.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J., , T. Johns, , M. Eagles, , W. Ingram, , and R. Davis, 1999: Towards the construction of climate change scenarios. Climatic Change, 41, 547581.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217242.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, doi:10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., , and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Pennell, C., , and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367.

  • Pinheiro, J. C., , and D. M. Bates, 2000: Mixed-Effects Models in S and S-PLUS. Springer Verlag, 528 pp.

  • Ramanathan, V., , P. J. Crutzen, , J. T. Kiehl, , and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119.

  • Santer, B. D., , T. M. L. Wigley, , M. E. Schlesinger, , and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie Tech. Rep. 47, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M., and Coauthors, 2000: Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions. Technol. Forecasting Soc. Change, 65, 167193.

    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464.

  • Solomon, S., , G. Plattner, , R. Knutti, , and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106, 1704.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2011: A summary of the CMIP5 experiment design. PCMDI Rep., 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , and B. Sansó, 2009: Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. Roy. Stat. Soc., 172A, 83106.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986.

  • Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531.

  • Watterson, I. G., 2008: Calculation of probability density functions for temperature and precipitation change under global warming. J. Geophys. Res., 113, D12106, doi:10.1029/2007JD009254.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., , and S. C. B. Raper, 2001: Interpretation of high projections for global-mean warming. Science, 293, 451454.

  • Wu, P., , R. Wood, , J. Ridley, , and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, doi:10.1029/2010GL043730.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 20
PDF Downloads 3654 3655 555

A Scaling Approach to Probabilistic Assessment of Regional Climate Change

View More View Less
  • 1 Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • 2 Ecofys, Cologne, Germany
  • 3 Climate Analytics, Potsdam, Germany
© Get Permissions
Restricted access

Abstract

A new approach to probabilistic projections of regional climate change is introduced. It builds on the already established quasi-linear relation between global-mean temperature and regional climate change found in atmosphere–ocean general circulation models (AOGCMs). The new approach simultaneously 1) takes correlations between temperature- and precipitation-related uncertainty distributions into account, 2) enables the inclusion of predictors other than global-mean temperature, and 3) checks for the interscenario and interrun variability of the scaling relationships. This study tests the effectiveness of SOx and black carbon emissions and greenhouse gas forcings as additional predictors of precipitation changes. The future precipitation response is found to deviate substantially from the linear relationship with global-mean temperature change in some regions; thereby, the two main limitations of a simple linear scaling approach, namely having to rely on exogenous aerosol experiments (or ignoring their regional effect), and ignoring changes in scaling coefficients when approaching equilibrium conditions, are addressed. The additional predictors can markedly improve the emulation of AOGCM simulations. In some regions, variations in hydrological sensitivity (the percentage change of precipitation per degree of warming) across different scenarios can be reduced by more than 50%. Coupled to probabilistic projections of global-mean temperatures and greenhouse gas forcings, bidimensional distributions of regional temperature and precipitation changes accounting for multiple uncertainties are derived. Based on 20 Fourth Assessment Report AOGCMs (AR4 AOGCMs), probabilistic projections are provided for two representative concentration pathway (RCP) scenarios and 31 world regions (online database at www.pik-potsdam.de/primap/regional_temp_and_precip). As an example application of the projections for climate adaptation and vulnerability studies, future changes in the surface mass balance of the Greenland Ice Sheet are computed.

Additional affiliation: School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.

Corresponding author address: Katja Frieler, Earth System Analysis, Potsdam Institute for Climate Impact Research, Telegrafenberg A26, 14412 Potsdam, Germany. E-mail: katja.frieler@pik-potsdam.de

Abstract

A new approach to probabilistic projections of regional climate change is introduced. It builds on the already established quasi-linear relation between global-mean temperature and regional climate change found in atmosphere–ocean general circulation models (AOGCMs). The new approach simultaneously 1) takes correlations between temperature- and precipitation-related uncertainty distributions into account, 2) enables the inclusion of predictors other than global-mean temperature, and 3) checks for the interscenario and interrun variability of the scaling relationships. This study tests the effectiveness of SOx and black carbon emissions and greenhouse gas forcings as additional predictors of precipitation changes. The future precipitation response is found to deviate substantially from the linear relationship with global-mean temperature change in some regions; thereby, the two main limitations of a simple linear scaling approach, namely having to rely on exogenous aerosol experiments (or ignoring their regional effect), and ignoring changes in scaling coefficients when approaching equilibrium conditions, are addressed. The additional predictors can markedly improve the emulation of AOGCM simulations. In some regions, variations in hydrological sensitivity (the percentage change of precipitation per degree of warming) across different scenarios can be reduced by more than 50%. Coupled to probabilistic projections of global-mean temperatures and greenhouse gas forcings, bidimensional distributions of regional temperature and precipitation changes accounting for multiple uncertainties are derived. Based on 20 Fourth Assessment Report AOGCMs (AR4 AOGCMs), probabilistic projections are provided for two representative concentration pathway (RCP) scenarios and 31 world regions (online database at www.pik-potsdam.de/primap/regional_temp_and_precip). As an example application of the projections for climate adaptation and vulnerability studies, future changes in the surface mass balance of the Greenland Ice Sheet are computed.

Additional affiliation: School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.

Corresponding author address: Katja Frieler, Earth System Analysis, Potsdam Institute for Climate Impact Research, Telegrafenberg A26, 14412 Potsdam, Germany. E-mail: katja.frieler@pik-potsdam.de
Save