• Agosta, E. A., , and P. O. Canziani, 2011: Austral spring stratospheric and tropospheric circulation interannual variability. J. Climate, 24, 26292647.

    • Search Google Scholar
    • Export Citation
  • Agosta, E. A., , P. O. Canziani, , and M. A. Cavagnaro, 2012: Regional climate variability impacts on the annual grape yield in Mendoza, Argentina. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., 2010: Extratropical air-sea interaction, sea surface temperature variability, and the Pacific decadal oscillation. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 123148.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities. J. Geophys. Res., 115, D23109, doi:10.1029/2010JD014664.

    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., , F. E. Malanca, , and E. A. Agosta, 2008: Ozone and upper troposphere/lower stratosphere variability and change at southern midlatitudes 1980–2000: Decadal variations. J. Geophys. Res., 113, D20101, doi:10.1029/2007JD009303.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. A. Renwick, , M. J. Salinger, , and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Grassi, B., , G. Redaelli, , and G. Visconti, 2008: Tropical SST preconditioning of the SH polar vortex during winter 2002. J. Climate, 21, 52955303.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236.

  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., , and Q. Fu, 2009: Antarctic atmospheric temperature trend patterns from satellite observations. Geophys. Res. Lett., 34, L12703, doi:10.1029/2006GL029108.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , C. Deser, , and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2008GL036076.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pegion, P. J., , and A. Kumar, 2010: Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J. Climate, 23, 43274341.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , H. Vömel, , G. E. Nedoluha, , and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi:10.1029/2007JD008861.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wallace, J. M., , C. Smith, , and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576.

    • Search Google Scholar
    • Export Citation
  • Willett, M. R., , P. Bechtold, , D. L. Williamson, , J. C. Petch, , S. F. Milton, , and S. J. Woolnough, 2008: Modelling suppressed and active convection: Comparisons between three global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 18811896.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 12
PDF Downloads 28 28 9

Effects of the PDO Phase on the Tropical Belt Width

View More View Less
  • 1 CETEMPS/Department of Physics, University of L’Aquila, Coppito-L’Aquila, Italy
  • 2 PEPACG, Pontificia Universidad Católica Argentina, and CONICET, Buenos Aires, Argentina
  • 3 CETEMPS/Department of Physics, University of L’Aquila, Coppito-L’Aquila, Italy
© Get Permissions
Restricted access

Abstract

Recent studies have shown that the tropical belt (TB) has progressively expanded since at least the late 1970s. This trend has been largely attributed to the radiative forcing due to greenhouse gas (GHG) increase and stratospheric ozone depletion, even if an influence of sea surface temperature (SST) anomalies has been also suggested. The impact of the Pacific decadal oscillation (PDO) on the TB width is investigated in this work. The study is performed by using both Atmospheric Model Intercomparison Project (AMIP) and idealized simulations, produced by the NCAR Community Atmosphere Model, version 3 (CAM3) GCM and reanalysis data [40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), ERA-Interim, and Modern-Era Retrospective Analysis for Research and Applications (MERRA)]. Reanalyses show that a switch of the PDO from a positive to a negative phase can lead to a significant TB expansion during the equinoxes. This effect, indicating a possible PDO contribution to the widening that characterized the TB width during the last decades, is not correctly reproduced by model simulations. Deficiencies in the sensitivity of model-simulated convective processes to SST anomalies are suggested as a possible cause of the TB widening underestimation.

Corresponding author address: Barbara Grassi, University of L’Aquila, CETEMPS/Department of Physics, Via Vetoio, 67010 Coppito-L’Aquila, Italy. E-mail: barbara.grassi@aquila.infn.it

Abstract

Recent studies have shown that the tropical belt (TB) has progressively expanded since at least the late 1970s. This trend has been largely attributed to the radiative forcing due to greenhouse gas (GHG) increase and stratospheric ozone depletion, even if an influence of sea surface temperature (SST) anomalies has been also suggested. The impact of the Pacific decadal oscillation (PDO) on the TB width is investigated in this work. The study is performed by using both Atmospheric Model Intercomparison Project (AMIP) and idealized simulations, produced by the NCAR Community Atmosphere Model, version 3 (CAM3) GCM and reanalysis data [40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), ERA-Interim, and Modern-Era Retrospective Analysis for Research and Applications (MERRA)]. Reanalyses show that a switch of the PDO from a positive to a negative phase can lead to a significant TB expansion during the equinoxes. This effect, indicating a possible PDO contribution to the widening that characterized the TB width during the last decades, is not correctly reproduced by model simulations. Deficiencies in the sensitivity of model-simulated convective processes to SST anomalies are suggested as a possible cause of the TB widening underestimation.

Corresponding author address: Barbara Grassi, University of L’Aquila, CETEMPS/Department of Physics, Via Vetoio, 67010 Coppito-L’Aquila, Italy. E-mail: barbara.grassi@aquila.infn.it
Save