• Bala, G., , K. Caldeira, , M. Wickett, , T. J. Phillips, , D. B. Lobell, , C. Delire, , and A. Mirin, 2007: Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA, 104, 65506555.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., , P. D. Falloon, , K. K. Goldewijk, , and N. Ramankutty, 2001: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Canadell, J. G., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA, 104, 18 86618 870.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., , K. W. Oleson, , G. B. Bonan, , L. O. Mearns, , L. E. Buja, , G. A. Meehl, , and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , E. Shevliakova, , P. C. D. Milly, , and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 36213634.

    • Search Google Scholar
    • Export Citation
  • Fujino, J., , R. Nair, , M. Kainuma, , T. Masui, , and Y. Matsuoka, 2006: Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Energy J., 3, 343354.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Houghton, R. A., 2003: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, 55, 378390 doi:10.1034/j.1600-0889.2003.01450.x.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., , S. Frolking, , M. G. Fearon, , B. Moore, , E. Shevliakova, , S. Malyshev, , S. W. Pacala, , and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , K. W. Oleson, , M. G. Flanner, , C. G. Fletcher, , P. J. Lawrence, , S. Levis, , S. C. Swenson, , and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., , and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., , and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the Community Climate System Model. Int. J. Climatol., 30, 20662087, doi:10.1002/joc.2061.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Riahi, K., , A. Gruebler, , and N. Nakićenović, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecasting Soc. Change, 74, 887935.

    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. PCMDI Rep., 32 pp.

  • van Vuuren, D. P., , M. G. J. den Elzen, , P. L. Lucas, , B. Eickhout, , B. J. Strengers, , B. van Ruijven, , S. Wonink, , and R. van Houdt, 2007: Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81, 119159, doi:10.1007/s10584-006-9172-9.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Wise, M. A., and Coauthors, 2009: Implications of limiting CO2 concentrations for land use and energy. Science, 324, 11831186.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 159 33
PDF Downloads 124 124 21

Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • 2 Department of Geography, University of Kansas, Lawrence, Kansas
  • 3 National Center for Atmospheric Research,* Boulder, Colorado
  • 4 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
© Get Permissions
Restricted access

Abstract

To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Peter J. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: lawrence@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Peter J. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: lawrence@ucar.edu

This article is included in the CCSM4 Special Collection.

Save