• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , P. Viterbo, , A. Beljaars, , B. van der Hurk, , M. Hirschi, , A. K. Betts, , and L. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The impact of some aspects of the boundary layer scheme in the ECMWF model. Proc. Seminar on Parameterization of Subgrid Physical Processes, Reading, United Kingdom, ECMWF, 125-161.

  • Beljaars, A. C. M., , P. Bechtold, , M. Köhler, , J.-J. Morcrette, , A. M. Tompkins, , P. Viterbo, , and N. Wedi, 2004: The numerics of physical parameterization. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 113–134.

  • Bengtsson, L., , K. Hodges, , and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543.

  • Bengtsson, L., , K. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , F. Doblas-Reyes, , T. Palmer, , G. Shutts, , and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. Roy. Soc. London, 366A, 25612579.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., , and S. Klein, 2010: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the twp-ice period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., and Coauthors, 2005: Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at Atmospheric Radiation Measurement sites. J. Geophys. Res., 110, D15S15, doi:10.1029/2004JD005042.

    • Search Google Scholar
    • Export Citation
  • Branković, C., , and D. Gregory, 2001: Impacts of horizontal resolution on seasonal integrations. Climate Dyn., 18, 123143.

  • Brown, A. R., 2004: Resolution dependence of orographic torques. Quart. J. Roy. Meteor. Soc., 130, 30293046.

  • Collins, W., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., and Coauthors, 2012: Simulating the hydrological diurnal cycle in global climate models: Resolution versus parametrization. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970.

  • Giorgetta, M., , E. Manzini, , and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Hodges, K., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465.

  • Hodges, K., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932.

  • Hodges, K., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373.

  • Hodges, K., 2008: Confidence intervals and significance tests for spherical data derived from feature tracking. Mon. Wea. Rev., 136, 17581777.

    • Search Google Scholar
    • Export Citation
  • Hodges, K., , R. Lee, , and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses: ERA-INTERIM, NASA-MERRA, NCEP-CFSR and JRA25. J. Climate, 24, 48884906.

    • Search Google Scholar
    • Export Citation
  • Hortal, M., , and A. Simmons, 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119, 10571074.

  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Jung, T., 2005: Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 131, 10451073.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , and P. B. Rhines, 2007: Greenland’s pressure drag and the Atlantic storm track. J. Atmos. Sci., 64, 40044030.

  • Jung, T., , T. N. Palmer, , and G. J. Shutts, 2005a: Influence of a stochastic parameterization on the frequency of occurrence of North Pacific weather regimes in the ECMWF model. Geophys. Res. Lett., 32, L23811, doi:10.1029/2005GL024248.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , A. M. Tompkins, , and M. J. Rodwell, 2005b: Some aspects of systematic error in the ECMWF model. Atmos. Sci. Lett., 6, 133139.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , S. K. Gulev, , I. Rudeva, , and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 18391857.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010a: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , M. Miller, , and T. Palmer, 2010b: Diagnosing the origin of extended-range forecast error. Mon. Wea. Rev., 138, 24342446.

  • Jung, T., , T. N. Palmer, , M. J. Rodwell, , and S. Serrar, 2010c: Understanding the anomalously cold European winter of 2005/06 using relaxation experiments. Mon. Wea. Rev., 138, 31573174.

    • Search Google Scholar
    • Export Citation
  • Manganello, J., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., , R. Mizuta, , and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., , H. W. Barker, , J. N. S. Cole, , M. J. Cole, , M. J. Iacono, , and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., , N. Rayner, , T. Smith, , M. Thomas, , D. Stokes, , and W. Wang, 2002: An improved in situ satellite SST analysis for climate. J. Climate, 15, 7387.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., , C. Temperton, , A. Simmons, , M. Hortal, , T. Davies, , D. Dent, , and M. Hamrud, 1995: Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev., 123, 489514.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2012: The intra-seasonal oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., doi:10.1007/s00382-011-1235-6, in press.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , M. J. Fennessy, , and J. Kinter III, 2009: A statistical–dynamical estimate of winter ENSO teleconnections in a future climate. J. Climate, 22, 66246638.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , R. Hagedorn, , M. Miller, , T. N. Palmer, , B. Hoskins, , J. Kinter, , J. Marotzke, , and J. Slingo, 2009: Revolution in climate prediction is both necessary and possible: A declaration at the World Modeling Summit for Climate Prediction. Bull. Amer. Meteor. Soc., 90, 1619.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and A. Hollingsworth, 2002: Some aspects of the improvement of skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter 110, ECMWF, Reading, United Kingdom, 25–35.

  • Temperton, C., , M. Hortal, , and A. Simmons, 2001: A two-time-level semi-Lagrangian global spectral model. Quart. J. Roy. Meteor. Soc., 127, 111127.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Tompkins, A. M., , and T. Jung, 2004: Influence of process interactions on MJO-like convective structures in the IFS model. ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, ECMWF, Reading, United Kingdom, 103–114.

  • Untch, A., , and M. Hortal, 2004: A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF model. Quart. J. Roy. Meteor. Soc., 130, 15051530.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Viterbo, P., , and A. C. M. Beljaars, 2005: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , J. T. Kiehl, , and J. J. Hack, 1995: Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution. Climate Dyn., 11, 377397.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. J. Hoskins, , M. Blackburn, , D. Hassel, , and K. I. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 235 28
PDF Downloads 144 144 20

High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill

View More View Less
  • 1 ECMWF, Reading, United Kingdom, and AWI, Bremerhaven, Germany
  • 2 ECMWF, Reading, United Kingdom
  • 3 COLA, Calverton, Maryland
  • 4 ESSC, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models.

In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena.

Corresponding author address: Dr. Thomas Jung, AWI, Bussestr. 24, Bremerhaven, Germany. E-mail: thomas.jung@awi.de

Abstract

The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models.

In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena.

Corresponding author address: Dr. Thomas Jung, AWI, Bussestr. 24, Bremerhaven, Germany. E-mail: thomas.jung@awi.de
Save