• Bras, R., , and I. Rodríguez-Iturbe, 1976: Evaluation of mean square error involved in approximating the areal average of a rainfall event by a discrete summation. Water Resour. Res., 12, 181184.

    • Search Google Scholar
    • Export Citation
  • Chen, M., , P. Xie, , J. E. Janowiak, , and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , I. Y. Fung, , and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 29432962.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , T. Qian, , K. E. Trenberth, , and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732791.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Gao, H., , Q. Tang, , C. R. Ferguson, , E. F. Wood, , and D. P. Lettenmaier, 2010: Estimating the water budget of major U.S. river basins via remote sensing. Int. J. Remote Sens., 31, 39553978, doi:10.1080/01431161.2010.483488.

    • Search Google Scholar
    • Export Citation
  • Jung, M., , M. Reichstein, , and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosci. Discuss., 6, 52715304.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82D, 3545.

  • Leblanc, M. J., , P. Tregoning, , G. Ramillien, , S. O. Tweed, , and A. Fakes, 2009: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res., 45, W04408, doi:10.1029/2008WR007333.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. P. Lettenmaier, , E. F. Wood, , and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99 (D7), 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , E. F. Wood, , and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13, 195206.

    • Search Google Scholar
    • Export Citation
  • Luo, L., , and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Coauthors, 2003: Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the Southern Great Plains. J. Geophys. Res., 108, 8843, doi:10.1029/2002JD003246.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., , and C. J. Willmott, 2010: Terrestrial air temperature and precipitation: 1900–2008 gridded monthly and annual time series. Version 2.01, Center for Climatic Research, University of Delaware. [Available online at http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_t_ts_2009.html.]

  • McCabe, M. F., , E. F. Wood, , R. Wojcik, , M. Pan, , J. Sheffield, , H. Gao, , and H. Su, 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112, 430444.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D. B., 2002: An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour., 25, 12751286.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and K. A. Dunne, 2002: Macroscale water fluxes 1. Quantifying errors in the estimation of basin mean precipitation. Water Resour. Res., 38, 1205, doi:10.1029/2001WR000759.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Morel, P., 2001: Why GEWEX? The agenda for a global energy and water cycle program. GEWEX News, Vol. 11, No.1, International GEWEX Project Office, Silver Spring, MD, 1–11.

  • Murphy, B., , and B. Timbal, 2008: A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol., 28, 859879, doi:10.1002/joc.1627.

    • Search Google Scholar
    • Export Citation
  • NASA, 2003: Earth Science Enterprise Strategy. National Aeronautics and Space Administration, Washington, DC, 94 pp. [Available online at http://science.nasa.gov/media/medialibrary/2010/03/31/ESE_Strategy2003.pdf.]

  • NASA NEWS Science Integration Team, 2007: Predicting energy and water cycle consequences of earth system variability and change. 89 pp. [Available at http://news.cisc.gmu.edu/doc/NEWS_implementation.pdf.]

  • Oki, T., , T. Nishimura, , and P. Dirmeyer, 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , and E. F. Wood, 2006: Data assimilation for estimating terrestrial water budget using a constrained ensemble Kalman filter. J. Hydrometeor., 7, 534547.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , E. F. Wood, , R. Wojcik, , and M. McCabe, 2008: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112, 12821294.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , H. Li, , and E. F. Wood, 2010: Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res., 46, W09535, doi:10.1029/2009WR008290.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., and Coauthors, 2010: Analysis of the Arctic system for freshwater cycle intensification: Observations and Expectations. J. Climate, 23, 57155737.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., , and J. M. Mejía, 1974: The design of rainfall networks in time and space. Water Resour. Res., 10, 713728, doi:10.1029/WR010i004p00713.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Sahoo, A. K., , M. Pan, , T. J. Troy, , R. Vinukollu, , J. Sheffield, , and E. F. Wood, 2011: Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens. Environ., 115, 18501865, doi:10.1016/j.rse.2011.03.009.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , T. Fuchs, , A. Meyer-Christoffer, , and B. Rudolf, 2008: Global precipitation analysis products of the GPCC. GPCC Publication, 12 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf.]

  • Sheffield, J., , and E. F. Wood, 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , G. Goteti, , and E. F. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , C. R. Ferguson, , T. J. Troy, , E. F. Wood, , and M. F. McCabe, 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. Uppala, , D. Dee, , and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf.]

  • Simon, D., , and T. L. Chia, 2002: Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst., 38, 128136.

  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat flux. Hydrol. Earth Syst. Sci., 6, 8599.

  • Swenson, S., , and J. Wahr, 2002: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107, 2193, doi:10.1029/2001JB000576.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , H. Gao, , P. Yeh, , T. Oki, , F. Su, , and D. P. Lettenmaier, 2010: Dynamics of terrestrial water storage change from satellite and surface observations and modeling. J. Hydrometeor., 11, 156170.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Troy, T. J., , J. Sheffield, , and E. F. Wood, 2010: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources. J. Climate, 24, 32723293.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., , E. F. Wood, , C. R. Ferguson, , and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, doi:10.1016/j.rse.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Yang, D., , D. Kane, , Z. Zhang, , D. Legates, , and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 140 33
PDF Downloads 130 130 40

Multisource Estimation of Long-Term Terrestrial Water Budget for Major Global River Basins

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

A systematic method is proposed to optimally combine estimates of the terrestrial water budget from different data sources and to enforce the water balance constraint using data assimilation techniques. The method is applied to create global long-term records of the terrestrial water budget by merging a number of global datasets including in situ observations, remote sensing retrievals, land surface model simulations, and global reanalyses. The estimation process has three steps. First, a conventional analysis on the errors and biases in different data sources is conducted based on existing validation/error studies and other information such as sensor network density, model physics, and calibration procedures. Then, the data merging process combines different estimates so that biases and errors from different data sources can be compensated to the greatest extent and the merged estimates have the best possible confidence. Finally, water balance errors are resolved using the constrained Kalman filter technique. The procedure is applied to 32 globally distributed major basins for 1984–2006. The authors believe that the resulting global water budget estimates can be used as a baseline dataset for large-scale diagnostic studies, for example, integrated assessment of basin water resources, trend analysis and attribution, and climate change studies. The global scale of the analysis presents significant challenges in carrying out the error analysis for each water budget variable. For some variables (e.g., evapotranspiration) the assumptions underpinning the error analysis lack supporting quantitative analysis and, thus, may not hold for specific locations. Nevertheless, the merging and water balance constraining technique can be applied to many problems.

Corresponding author address: Ming Pan, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: mpan@princeton.edu

Abstract

A systematic method is proposed to optimally combine estimates of the terrestrial water budget from different data sources and to enforce the water balance constraint using data assimilation techniques. The method is applied to create global long-term records of the terrestrial water budget by merging a number of global datasets including in situ observations, remote sensing retrievals, land surface model simulations, and global reanalyses. The estimation process has three steps. First, a conventional analysis on the errors and biases in different data sources is conducted based on existing validation/error studies and other information such as sensor network density, model physics, and calibration procedures. Then, the data merging process combines different estimates so that biases and errors from different data sources can be compensated to the greatest extent and the merged estimates have the best possible confidence. Finally, water balance errors are resolved using the constrained Kalman filter technique. The procedure is applied to 32 globally distributed major basins for 1984–2006. The authors believe that the resulting global water budget estimates can be used as a baseline dataset for large-scale diagnostic studies, for example, integrated assessment of basin water resources, trend analysis and attribution, and climate change studies. The global scale of the analysis presents significant challenges in carrying out the error analysis for each water budget variable. For some variables (e.g., evapotranspiration) the assumptions underpinning the error analysis lack supporting quantitative analysis and, thus, may not hold for specific locations. Nevertheless, the merging and water balance constraining technique can be applied to many problems.

Corresponding author address: Ming Pan, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: mpan@princeton.edu
Save