• Barnes, E. A., , and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , and N. A. Davis, 2011: The seasonal cycle of midlatitude static stability over land and ocean in global reanalyses. Geophys. Res. Lett., 38, L13803, doi:10.1029/2011GL047747.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , and P. Zurita-Gator, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , I. N. James, , and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , S. M. Dean, , J. A. Renwick, , and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res., Lett., 37, L03806, doi:10.1029/2009GL041615.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., , and V. L. Harvey, 2005: Global climatology of inertial instability and Rossby wave breaking in the stratosphere. J. Geophys. Res., 110, D06108, doi:10.1029/2004JD005068.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. T., 2012: Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat. J. Geophys. Res., 117, D06202, doi:10.1029/2011JD016678.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Veritcal propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883.

  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. B. Mitchell, 2007: The WRCP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. Springer Verlag, 520 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110, D11305, doi:10.1029/2004JD005664.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res., Lett., 27, 38573860.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 10
PDF Downloads 32 32 7

The Global Distribution of Atmospheric Eddy Length Scales

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The correlation lengths of vorticity anomalies from temporal averages are examined in the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset. It is shown that, in the annual mean, eddies in the Southern Hemisphere are significantly larger than those in the Northern Hemisphere. The eddy vorticity lengths exhibit a strong seasonal cycle, with the largest scales occurring in the winter season. The maximum zonal eddy lengths closely follow the contours of the strong upper-level winds, while the maximum meridional lengths are found in jet exit regions and in the stratosphere.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: eabarnes@atmos.washington.edu

Abstract

The correlation lengths of vorticity anomalies from temporal averages are examined in the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset. It is shown that, in the annual mean, eddies in the Southern Hemisphere are significantly larger than those in the Northern Hemisphere. The eddy vorticity lengths exhibit a strong seasonal cycle, with the largest scales occurring in the winter season. The maximum zonal eddy lengths closely follow the contours of the strong upper-level winds, while the maximum meridional lengths are found in jet exit regions and in the stratosphere.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: eabarnes@atmos.washington.edu
Save