• Abramowitz, G., 2005: Towards a benchmark for land surface models. Geophys. Res. Lett., 32, L22702, doi:10.1029/2005GL024419.

  • Abramowitz, G., , R. Leuning, , M. Clark, , and A. Pitman, 2008: Evaluating the performance of land surface models. J. Climate, 21, 54685481.

    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, doi:10.1038/ngeo905.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , J. H. Ball, , A. C. M. Beljaars, , M. J. Miller, , and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486.

  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 21222143.

  • Davin, E. L., , and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., , N. de Noblet-Ducoudré, , and P. Friedlingstein, 2007: Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophys. Res. Lett., 34, L13702, doi:10.1029/2007GL029678.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., and Coauthors, 1995: Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties. J. Geophys. Res., 100, 20 86720 882.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. D. Solomon et al., Eds., Cambridge University Press, 499–588.

  • Deo, R. C., , J. I. Syktus, , C. A. McAlpine, , P. J. Lawrence, , H. A. McGowan, , and S. R. Phinn, 2009: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett., 36, L08705, doi:10.1029/2009GL037666.

    • Search Google Scholar
    • Export Citation
  • Fall, S., , D. Niyogi, , A. Gluhovsky, , R. A. Pielke Sr., , E. Kalnay, , and G. Rochon, 2010a: Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol., 30, 19801993.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , E. Shevliakova, , P. C. D. Milly, , and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 36213634.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , A. J. Pitman, , M. H. England, , and P. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Gallo, K. P., , T. W. Owen, , D. R. Easterling, , and P. F. Jamason, 1999: Temperature trends of the U.S. Historical Climatology Network based on satellite designated land use/land cover. J. Climate, 12, 13441348.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., , and P. J. Valdes, 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27, 12 75312 758.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., , S. Schaphoff, , and W. Lucht, 2007: Potential future changes in water limitations of the terrestrial biosphere. Climatic Change, 80, 277299, doi:10.1007/s10584-006-9104-8.

    • Search Google Scholar
    • Export Citation
  • Hale, R. C., , K. P. Gallo, , T. W. Owen, , and T. R. Loveland, 2006: Land use/land cover change effects on temperature trends at U.S. Climate Normals stations. Geophys. Res. Lett., 33, L11703, doi:10.1029/2006GL026358.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , R. E. Dickinson, , T. B. Durbidge, , P. J. Kennedy, , K. McGuffie, , and A. J. Pitman, 1993: Tropical deforestation: Modeling local- to regional-scale climate change. J. Geophys. Res., 98, 72897315.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., , S. Frolking, , M. G. Fearon, , B. Moore III, , E. Shevliakova, , S. Malyshev, , S. W. Pacala, , and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J. O., , K. M. Krumhardt, , E. C. Ellis, , W. F. Ruddiman, , C. Lemmen, , and K. Klein Goldewijk, 2011: Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 21, 775791, doi:10.1177/0959683610386983.

    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles, 15, 417433.

    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., , A. Beusen, , G. van Drecht, , and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 7386, doi:10.1111/j.1466-8238.2010.00587.x.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamical global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., , and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the Community Climate System Model. Int. J. Climatol., 30, 20662087.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Climate, 21, 20642071.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., , B. C. Reed, , J. F. Brown, , D. O. Ohlen, , Z. Zhu, , L. Yang, , and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., , K. G. Hubbard, , R. D. Leeper, , and S. A. Foster, 2008: Increase in near-surface atmospheric moisture content due to land use changes: Evidence from the observed dewpoint temperature data. Mon. Wea. Rev., 136, 15541561.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126, doi:10.1007/s00382-009-0640-6.

    • Search Google Scholar
    • Export Citation
  • Masson, V., , J.-L. Champeaux, , F. Chauvin, , C. Meriguet, , and R. Lacaze, 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16, 12611282.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., , M. J. Best, , and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi:10.1029/2010GL042845.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., , and M. R. Dix, 2008: An updated description of the Conformal-Cubic Atmospheric Model. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 51–76.

  • Oleson, K. W., , G. B. Bonan, , S. Levis, , and M. Vertenstein, 2004: Effects of land use change on North American climate: Impact of surface datasets and model biogeophysics. Climate Dyn., 23, 117132.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., , G. Marland, , R. A. Betts, , T. N. Chase, , J. L. Eastman, , J. O. Niles, , D. D. S. Niyogi, , and S. W. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc. London, A360, 17051719.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479510.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., , C. H. Reick, , T. Raddatz, , and M. Claussen, 2008: A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles, 22, GB3018, doi:10.1029/2007GB003153.

    • Search Google Scholar
    • Export Citation
  • Raddatz, T. J., and Coauthors, 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., , and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791.

    • Search Google Scholar
    • Export Citation
  • Salas-Mélia, D., and Coauthors, cited 2005: Description and validation of the CNRM-CM3 global coupled climate model. [Available online at http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf.]

  • Santanello, J. A., , C. D. Peters-Lidard, , S. V. Kumar, , C. Alonge, , and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., , J. A. Berry, , G. J. Collatz, , C. B. Field, , and F. G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ., 42, 187216.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , T. Corti, , E. L. Davin, , M. Hirschi, , E. B. Jaeger, , I. Lehner, , B. Orlowsky, , and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , N. P. Gillett, , G. C. Hegerl, , D. J. Karoly, , D. A. Stone, , X. Zhang, , and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, doi:10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Strengers, B. J., and Coauthors, 2010: Assessing 20th century climate–vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int. J. Climatol., 30, 20552065, doi:10.1002/joc.2132.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B. J. J. M., , P. Viterbo, , A. C. M. Beljaars, , and A. K. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 42 pp. [Available online at http://www.knmi.nl/publications/fulltexts/tm295.pdf.]

  • Van der Molen, M. K., , B. J. J. M. van den Hurk, , and W. Hazeleger, 2011: A dampened land use change climate response towards the tropics. Climate Dyn., 37, 20352043, doi:10.1007/s00382-011-1018-0.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., 2006: Quantifying the impact of future land-use changes against increases in GHG concentrations. Geophys. Res. Lett., 33, L04701, doi:10.1029/2005GL024354.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., , D. Baldocchi, , R. Leuning, , E. Falge, , and T. Vesala, 2007: Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biol., 13, 652670, doi:10.1111/j.1365-2486.2006.01225.x.

    • Search Google Scholar
    • Export Citation
  • Werth, D., , and R. Avissar, 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107, 8087, doi:10.1029/2001JD000717.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., , and S. Manabe, 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res., 107, 4379, doi:10.1029/2001JD001195.

    • Search Google Scholar
    • Export Citation
  • Williams, M., 2003: Deforesting the Earth: From Prehistory to Global Crisis. University of Chicago Press, 689 pp.

  • Zhang, H., , A. Henderson-Sellers, , and K. McGuffie, 1996: Impacts of tropical deforestation. Part I: Process analysis of local climatic change. J. Climate, 9, 14971517.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and A. J. Pitman, 2002: The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophys. Res. Lett., 29, 1078, doi:10.1029/2001GL013476.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , R. E. Dickinson, , Y. Tian, , J. Fang, , Q. Li, , R. K. Kaufman, , C. J. Tucker, , and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 300 300 74
PDF Downloads 237 237 49

Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments

View More View Less
  • 1 * Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France
  • 2 Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
  • 3 National Center for Atmospheric Research, Boulder, Colorado
  • 4 Max Planck Institute for Meteorology, Hamburg, Germany
  • 5 Groupe d’Étude de l’Atmosphère Météorologique, Toulouse, France
  • 6 ** Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • 7 Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • 8 PBL Netherlands Environmental Assessment Agency, Bilthoven, Netherlands
© Get Permissions
Restricted access

Abstract

The project Land-Use and Climate, Identification of Robust Impacts (LUCID) was conceived to address the robustness of biogeophysical impacts of historical land use–land cover change (LULCC). LUCID used seven atmosphere–land models with a common experimental design to explore those impacts of LULCC that are robust and consistent across the climate models. The biogeophysical impacts of LULCC were also compared to the impact of elevated greenhouse gases and resulting changes in sea surface temperatures and sea ice extent (CO2SST). Focusing the analysis on Eurasia and North America, this study shows that for a number of variables LULCC has an impact of similar magnitude but of an opposite sign, to increased greenhouse gases and warmer oceans. However, the variability among the individual models’ response to LULCC is larger than that found from the increase in CO2SST. The results of the study show that although the dispersion among the models’ response to LULCC is large, there are a number of robust common features shared by all models: the amount of available energy used for turbulent fluxes is consistent between the models and the changes in response to LULCC depend almost linearly on the amount of trees removed. However, less encouraging is the conclusion that there is no consistency among the various models regarding how LULCC affects the partitioning of available energy between latent and sensible heat fluxes at a specific time. The results therefore highlight the urgent need to evaluate land surface models more thoroughly, particularly how they respond to a perturbation in addition to how they simulate an observed average state.

Current affiliation: Manila Observatory, Quezon City, Philippines.

Corresponding author address: Nathalie de Noblet-Ducoudré, Laboratoire des Sciences du Climat et de l’Environnement, Bâtiment 712, Orme des Merisiers, Point Courrier 132, F-91191 Gif-sur-Yvette CEDEX, France. E-mail: nathalie.de-noblet@lsce.ipsl.fr

Abstract

The project Land-Use and Climate, Identification of Robust Impacts (LUCID) was conceived to address the robustness of biogeophysical impacts of historical land use–land cover change (LULCC). LUCID used seven atmosphere–land models with a common experimental design to explore those impacts of LULCC that are robust and consistent across the climate models. The biogeophysical impacts of LULCC were also compared to the impact of elevated greenhouse gases and resulting changes in sea surface temperatures and sea ice extent (CO2SST). Focusing the analysis on Eurasia and North America, this study shows that for a number of variables LULCC has an impact of similar magnitude but of an opposite sign, to increased greenhouse gases and warmer oceans. However, the variability among the individual models’ response to LULCC is larger than that found from the increase in CO2SST. The results of the study show that although the dispersion among the models’ response to LULCC is large, there are a number of robust common features shared by all models: the amount of available energy used for turbulent fluxes is consistent between the models and the changes in response to LULCC depend almost linearly on the amount of trees removed. However, less encouraging is the conclusion that there is no consistency among the various models regarding how LULCC affects the partitioning of available energy between latent and sensible heat fluxes at a specific time. The results therefore highlight the urgent need to evaluate land surface models more thoroughly, particularly how they respond to a perturbation in addition to how they simulate an observed average state.

Current affiliation: Manila Observatory, Quezon City, Philippines.

Corresponding author address: Nathalie de Noblet-Ducoudré, Laboratoire des Sciences du Climat et de l’Environnement, Bâtiment 712, Orme des Merisiers, Point Courrier 132, F-91191 Gif-sur-Yvette CEDEX, France. E-mail: nathalie.de-noblet@lsce.ipsl.fr
Save