• Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , Y.-G. Ham, , J.-S. Kug, , F.-F. Jin, , and I.-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18, 26172627.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-S. Kug, , Y.-G. Ham, , and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 321.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , S.-P. Xie, , J. P. McCreary, , and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , S. Kida, , and J. Hafner, 2010: Potential impact of the tropical Indian Ocean Indonesian Seas on El Niño characteristics. J. Climate, 23, 39333952.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., , S. Cravatte, , and C. Menkes, 2003: Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J. Geophys. Res., 108, 3311, doi:10.1029/2002JC001760.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , A. Wittenberg, , and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298.

    • Search Google Scholar
    • Export Citation
  • Choi, J., , S.-I. An, , J.-S. Kug, , and S.-W. Yeh, 2011: The role of mean state on changes in El Niño’s flavor. Climate Dyn., 37, 12051215.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , S.-P. Xie, , J.-J. Luo, , J. Hafner, , S. Behera, , Y. Masumoto, , and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., , and S. Van Gorder, 1999: The connection between the boreal spring Southern Oscillation persistence barrier and biennial variability. J. Climate, 12, 612620.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Goswami, B. N., , and J. Shukla, 1991: Predictability of a coupled ocean-atmosphere model. J. Climate, 4, 322.

  • Hasumi, H., 2006: CCSR Ocean Component Model (COCO) version 4.0. CCSR Rep. 25, 111 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/~hasumi/COCO/coco4.pdf.]

  • Hasumi, H., , and S. Emori, Eds., 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep., 39 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694.

  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and T.-Y. Xu, 2001: Robustness of the nonlinear atmospheric response to opposite phases of ENSO. J. Climate, 14, 12771293.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , T. Li, , L. Ho, , and Y.-C. Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., , and J. L. Kinter III, 2009: Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Climate Dyn., 32, 675691, doi:10.1007/s00382-008-0418-2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kang, I.-S., , and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, doi:10.1029/2002GL015924.

  • Klein, S. A., , B. J. Soden, , and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 17841801.

  • Kug, J.-S., , B. P. Kirtman, , and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean in an interactive coupled model. J. Climate, 19, 63716381.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997/98 El Niño? Bull. Amer. Meteor. Soc., 81, 21072119.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , and T. Yamagata, 2001: Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106, 22 21122 227.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , R. Zhang, , S. K. Behera, , Y. Masumoto, , F.-F. Jin, , R. Lukas, , and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , and X. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, doi:10.1029/2009GL038774.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., , K. Ando, , and K. Mizuno, 2008: Pausing of the ENSO cycle: A case study from 1998 to 2002. J. Climate, 21, 342363.

  • Ohba, M., , and H. Ueda, 2005: Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA, 1, 8992.

  • Ohba, M., , and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , and H. Ueda, 2009a: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , and H. Ueda, 2009b: Seasonally different response of the Indian Ocean to the remote forcing of El Niño: Linking the dynamics and thermodynamics. SOLA, 5, 176179, doi:10.2151/sola.2009-045.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , D. Nohara, , and H. Ueda, 2010: Simulation of asymmetric ENSO transition in WCRP CMIP3 multimodel experiments. J. Climate, 23, 60516067.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., , and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843.

  • Okumura, Y. M., , M. Ohba, , and C. Deser, 2011: A proposed mechanism for asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and M. J. Suarez, 1988: Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549566.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Terao, T., , and T. Kubota, 2005: East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, doi:10.1029/2005GL023010.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 19852004.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., , and W. B. White, 1995: ENSO signals in global upper ocean temperature. J. Phys. Oceanogr., 25, 13171332.

  • Ueda, H., , and R. Kawamura, 2004: Summertime anomalous warming over the midlatitude western North Pacific and its relationships to the modulation of the Asian monsoon. Int. J. Climatol., 24, 11091120.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weaking of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14, 98115.

  • Watanabe, M., , and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of the Philippine Sea anticyclone during El Niño. Geophys. Res. Lett., 29, 1478, doi:10.1029/2001GL014318.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and F.-F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical–convective response to El Niño. J. Climate, 16, 11211139.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , M. Chikira, , Y. Imada, , and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562.

  • Weisberg, R. H., , and C. Wang, 1997: Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate, 10, 19982017.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and H. van den Dool, 2009: An analysis of ENSO prediction skill in the CFS retrospective forecasts. J. Climate, 22, 18011818.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Du, , G. Huang, , X.-T. Zheng, , H. Tokinaga, , K. Hu, , and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, G., , T. Yasuda, , Y. Fujii, , and S. Matsumoto, 2009: Rapid termination of the 2006 El Niño and its relation to the Indian Ocean. Geophys. Res. Lett., 36, L07702, doi:10.1029/2009GL037298.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., 2005: Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere-ocean general circulation model. Geophys. Res. Lett., 32, L13707, doi:10.1029/2005GL023406.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , C. R. Mechoso, , J. C. McWilliams, , and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29, 1204, doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , F. Sun, , and H.-Y. Kao, 2009: Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J. Climate, 22, 18501858.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26, 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 5
PDF Downloads 10 10 2

Role of the Indo-Pacific Interbasin Coupling in Predicting Asymmetric ENSO Transition and Duration

View More View Less
  • 1 Central Research Institute of Electric Power Industry, Abiko, Japan
  • 2 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
© Get Permissions
Restricted access

Abstract

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. E-mail: oba-m@criepi.denken.or.jp

Abstract

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. E-mail: oba-m@criepi.denken.or.jp
Save