• Alley, R., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 1–18.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Atkinson, G. D., , and C. R. Holiday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421427.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , M. Botzet, , and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , M. Esch, , N. Keenlyside, , L. Kornblueh, , J.-J. Luo, , and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52, 233240.

  • Camp, J. P., , and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129, 17041717.

  • Ding, Y., , and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, B. Wang, Ed., Springer, 131–201.

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112, 24012420.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541.

  • Kitoh, A., , T. Ose, , K. Kurihara, , S. Kusunoki, , M. Sugi, and KAKUSHIN Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN program: Results of preliminary experiments. Hydrol. Res. Lett., 3, 4953.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010a: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Knutson, T. R., , C. W. Landsea, , and K. A. Emanuel, 2010b: Tropical cyclones and climate change: A review. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific Publishing Company, 243–284.

  • LaRow, T. E., , Y.-K. Lim, , D. W. Shin, , E. P. Chassignet, , and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., , and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., , D. J. Karoly, , M. Leplastrier, , and B. W. Buckley, 2007: Variability of tropical cyclones over the southwest Pacific Ocean using a high-resolution climate model. Meteor. Atmos. Phys., 97, 171180.

    • Search Google Scholar
    • Export Citation
  • Li, T., , M. Kwon, , M. Zhao, , J.-S. Kug, , J.-J. Luo, , and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2009: Tropical intraseasonal variability in the MRI-20km60L AGCM. J. Climate, 22, 20062022.

  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Mizuta, R., and Coauthors, 2006: 20-km-mesh global climate simulations using JMA-GSM model–mean climate states. J. Meteor. Soc. Japan, 84, 165185.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., , Y. Adachi, , S. Yukimoto, , and S. Kusunoki, 2008: Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Meteorological Research Institute Tech. Rep. 56, 28 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_56/56_en.html.]

  • Mizuta, R., and Coauthors, 2012: Climate simulations using MRI-AGCM with 20-km grid. J. Meteor. Soc. Japan, 90A, 235260.

  • Murakami, H., , and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376.

  • Murakami, H., , and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , T. Matsumura, , R. Sakai, , A. Noda, , and S. Kusunoki, 2008: Verification of typhoon forecasts for a 20 km-mesh high-resolution global model. J. Meteor. Soc. Japan, 86, 669698.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., doi:10.1007/s00382-011-1223-x, in press.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., , A. Kitoh, , R. Mizuta, , S. Jajani, , and T. Nakazawa, 2008: High resolution simulation of mean convection and its intraseasonal variability over the tropics in MRI/JMA 20-km mesh AGCM. J. Climate, 21, 37223739.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 137–144.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , and D. P. Rowell, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stowasser, M., , Y. Wang, , and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 23782396.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192.

  • Tiedtke, M., 1989: Acomprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Unisys, cited 2011: Unisys weather hurricane/tropical data. [Available online at http://weather.unisys.com/hurricane/.]

  • Vecchi, G. A., , and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., , K.-C. Nguyen, , and J. L. McGregor, 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dyn., 22, 4756.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., , M. Fiorino, , C. W. Landsea, , and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , Y. N. Takayabu, , and J. C. L. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dyn., 33, 665683.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , and Y. Wang, 2009: Response of tropical cyclone potential intensity over the north Indian Ocean to global warming. Geophys. Res. Lett., 36, L03709, doi:10.1029/2008GL036742.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , Y. Wang, , and K. Hamilton, 2010: Response of tropical cyclone potential intensity to a global warming scenario in the IPCC AR4 CGCMs. J. Climate, 23, 13541373.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model version 1 (MRI-ESM1)—Model description. Meteorological Research Institute Tech. Rep. 64, 88 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index.html.]

  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 417 108
PDF Downloads 307 307 74

Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Meteorological Research Institute, Tsukuba, Ibaraki, Japan
  • 2 Department of Meteorology, and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
  • 3 Meteorological Research Institute, Tsukuba, Ibaraki, Japan
  • 4 Japan Agency for Marine-Earth Science and Technology, Meteorological Research Institute, Tsukuba, Ibaraki, Japan
  • 5 Meteorological Research Institute, Tsukuba, Ibaraki, Japan
© Get Permissions
Restricted access

Abstract

New versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute (MRI) atmospheric general circulation models (MRI-AGCM version 3.2) have been developed and used to investigate potential future changes in tropical cyclone (TC) activity. Compared with the previous version (version 3.1), version 3.2 yields a more realistic simulation of the present-day (1979–2003) global distribution of TCs. Moreover, the 20-km-mesh model version 3.2 is able to simulate extremely intense TCs (categories 4 and 5), which is the first time a global climate model has been able to simulate such extremely intense TCs through a multidecadal simulation. Future (2075–99) projections under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario are conducted using versions 3.1 and 3.2, showing consistent decreases in the number of TCs globally and in both hemispheres as climate warms. Although projected future changes in basin-scale TC numbers show some differences between the two versions, the projected frequency of TC occurrence shows a consistent decrease in the western part of the western North Pacific (WNP) and in the South Pacific Ocean (SPO), while it shows a marked increase in the central Pacific. Both versions project a future increase in the frequency of intense TCs globally; however, the degree of increase is smaller in version 3.2 than in version 3.1. This difference arises partly because version 3.2 projects a pronounced decrease in mean TC intensity in the SPO. The 20-km-mesh model version 3.2 projects a northward shift in the most intense TCs (category 5) in the WNP, indicating an increasing potential for future catastrophic damage due to TCs in this region.

International Pacific Research Center Publication Number 847.

Corresponding author address: Hiroyuki Murakami, JAMSTEC, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: hir.murakami@gmail.com

Abstract

New versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute (MRI) atmospheric general circulation models (MRI-AGCM version 3.2) have been developed and used to investigate potential future changes in tropical cyclone (TC) activity. Compared with the previous version (version 3.1), version 3.2 yields a more realistic simulation of the present-day (1979–2003) global distribution of TCs. Moreover, the 20-km-mesh model version 3.2 is able to simulate extremely intense TCs (categories 4 and 5), which is the first time a global climate model has been able to simulate such extremely intense TCs through a multidecadal simulation. Future (2075–99) projections under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario are conducted using versions 3.1 and 3.2, showing consistent decreases in the number of TCs globally and in both hemispheres as climate warms. Although projected future changes in basin-scale TC numbers show some differences between the two versions, the projected frequency of TC occurrence shows a consistent decrease in the western part of the western North Pacific (WNP) and in the South Pacific Ocean (SPO), while it shows a marked increase in the central Pacific. Both versions project a future increase in the frequency of intense TCs globally; however, the degree of increase is smaller in version 3.2 than in version 3.1. This difference arises partly because version 3.2 projects a pronounced decrease in mean TC intensity in the SPO. The 20-km-mesh model version 3.2 projects a northward shift in the most intense TCs (category 5) in the WNP, indicating an increasing potential for future catastrophic damage due to TCs in this region.

International Pacific Research Center Publication Number 847.

Corresponding author address: Hiroyuki Murakami, JAMSTEC, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: hir.murakami@gmail.com
Save