Observations of Climate Feedbacks over 2000–10 and Comparisons to Climate Models

A. E. Dessler Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by A. E. Dessler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Feedbacks in response to climate variations during the period 2000–10 have been calculated using reanalysis meteorological fields and top-of-atmosphere flux measurements. Over this period, the climate was stabilized by a strongly negative temperature feedback (~−3 W m−2 K−1); climate variations were also amplified by a strong positive water vapor feedback (~+1.2 W m−2 K−1) and smaller positive albedo and cloud feedbacks (~+0.3 and +0.5 W m−2 K−1, respectively). These observations are compared to two climate model ensembles, one dominated by internal variability (the control ensemble) and the other dominated by long-term global warming (the A1B ensemble). The control ensemble produces global average feedbacks that agree within uncertainties with the observations, as well as producing similar spatial patterns. The most significant discrepancy was in the spatial pattern for the total (shortwave + longwave) cloud feedback. Feedbacks calculated from the A1B ensemble show a stronger negative temperature feedback (due to a stronger lapse-rate feedback), but that is cancelled by a stronger positive water vapor feedback. The feedbacks in the A1B ensemble tend to be more smoothly distributed in space, which is consistent with the differences between El Niño–Southern Oscillation (ENSO) climate variations and long-term global warming. The sum of all of the feedbacks, sometimes referred to as the thermal damping rate, is −1.15 ± 0.88 W m−2 K−1 in the observations and −0.60 ± 0.37 W m−2 K−1 in the control ensemble. Within the control ensemble, models that more accurately simulate ENSO tend to produce thermal damping rates closer to the observations. The A1B ensemble average thermal damping rate is −1.26 ± 0.45 W m−2 K−1.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-11-00640.s1.

Corresponding author address: A. E. Dessler, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: adessler@tamu.edu

Abstract

Feedbacks in response to climate variations during the period 2000–10 have been calculated using reanalysis meteorological fields and top-of-atmosphere flux measurements. Over this period, the climate was stabilized by a strongly negative temperature feedback (~−3 W m−2 K−1); climate variations were also amplified by a strong positive water vapor feedback (~+1.2 W m−2 K−1) and smaller positive albedo and cloud feedbacks (~+0.3 and +0.5 W m−2 K−1, respectively). These observations are compared to two climate model ensembles, one dominated by internal variability (the control ensemble) and the other dominated by long-term global warming (the A1B ensemble). The control ensemble produces global average feedbacks that agree within uncertainties with the observations, as well as producing similar spatial patterns. The most significant discrepancy was in the spatial pattern for the total (shortwave + longwave) cloud feedback. Feedbacks calculated from the A1B ensemble show a stronger negative temperature feedback (due to a stronger lapse-rate feedback), but that is cancelled by a stronger positive water vapor feedback. The feedbacks in the A1B ensemble tend to be more smoothly distributed in space, which is consistent with the differences between El Niño–Southern Oscillation (ENSO) climate variations and long-term global warming. The sum of all of the feedbacks, sometimes referred to as the thermal damping rate, is −1.15 ± 0.88 W m−2 K−1 in the observations and −0.60 ± 0.37 W m−2 K−1 in the control ensemble. Within the control ensemble, models that more accurately simulate ENSO tend to produce thermal damping rates closer to the observations. The A1B ensemble average thermal damping rate is −1.26 ± 0.45 W m−2 K−1.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-11-00640.s1.

Corresponding author address: A. E. Dessler, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: adessler@tamu.edu

Supplementary Materials

    • Supplemental Materials (PDF 8.53 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and response. Climate Dyn., 20, 415429, doi:10.1007/s00382-002-0283-3.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Colman, R. A., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873.

  • Colman, R. A., and S. B. Power, 2010: Atmospheric radiative feedbacks associated with transient climate change and climate variability. Climate Dyn., 34, 919933, doi:10.1007/s00382-009-0541-8.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, doi:10.1126/science.1192546.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2009: A matter of humidity. Science, 323, 10201021, doi:10.1126/Science.1171264.

  • Dessler, A. E., and S. Wong, 2009: Estimates of the water vapor climate feedback during the El Niño–Southern Oscillation. J. Climate, 22, 64046412.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., P. Yang, and Z. Zhang, 2008: The water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett., 35, L20704, doi:10.1029/2008GL035333.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D., and M. Collins, 2004: Quantifying the water vapour feedback associated with post-Pinatubo global cooling. Climate Dyn., 23, 207214.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud - climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Held, I., and K. M. Shell, 2012: Using relative humidity as a state variable in climate feedback analysis. J. Climate, 25, 25782582.

  • Ingram, W., 2010: A very simple model for the water vapour feedback on climate change. Quart. J. Roy. Meteor. Soc., 136, 3040, doi:10.1002/qj.546.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, doi:10.1029/2006GL028937.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and Y.-S. Choi, 2009: On the determination of climate feedbacks from ERBE data. Geophys. Res. Lett., 36, L16705, doi:10.1029/2009gl039628.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Minschwaner, K., and A. E. Dessler, 2004: Water vapor feedback in the tropical upper troposphere: Model results and observations. J. Climate, 17, 12721282.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely, J. P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, doi:10.1126/science.1206027.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/bf00204745.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1265 392 29
PDF Downloads 846 223 17