Reassessing Statistical Downscaling Techniques for Their Robust Application under Climate Change Conditions

J. M. Gutiérrez Instituto de Física de Cantabria (UNICAN-CSIC), Santander, Spain

Search for other papers by J. M. Gutiérrez in
Current site
Google Scholar
PubMed
Close
,
D. San-Martín Instituto de Física de Cantabria (UNICAN-CSIC), Santander, Spain

Search for other papers by D. San-Martín in
Current site
Google Scholar
PubMed
Close
,
S. Brands Instituto de Física de Cantabria (UNICAN-CSIC), Santander, Spain

Search for other papers by S. Brands in
Current site
Google Scholar
PubMed
Close
,
R. Manzanas Instituto de Física de Cantabria (UNICAN-CSIC), Santander, Spain

Search for other papers by R. Manzanas in
Current site
Google Scholar
PubMed
Close
, and
S. Herrera Instituto de Física de Cantabria (UNICAN-CSIC), Santander, Spain

Search for other papers by S. Herrera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of statistical downscaling (SD) techniques is critically reassessed with respect to their robust applicability in climate change studies. To this end, in addition to standard accuracy measures and distributional similarity scores, the authors estimate the robustness of the methods under warming climate conditions working with anomalous warm historical periods. This validation framework is applied to intercompare the performances of 12 different SD methods (from the analog, weather typing, and regression families) for downscaling minimum and maximum temperatures in Spain. First, a calibration of these methods is performed in terms of both geographical domains and predictor sets; the results are highly dependent on the latter, with optimum predictor sets including near-surface temperature data (in particular 2-m temperature), which appropriately discriminate cold episodes related to temperature inversion in the lower troposphere.

Although regression methods perform best in terms of correlation, analog and weather generator approaches are more appropriate for reproducing the observed distributions, especially in case of wintertime minimum temperature. However, the latter two families significantly underestimate the temperature anomalies of the warm periods considered in this work. This underestimation is found to be critical when considering the warming signal in the late twenty-first century as given by a global climate model [the ECHAM5–Max Planck Institute (MPI) model]. In this case, the different downscaling methods provide warming values with differences in the range of 1°C, in agreement with the robustness significance values. Therefore, the proposed test is a promising technique for detecting lack of robustness in statistical downscaling methods applied in climate change studies.

Corresponding author address: José M. Gutiérrez, Instituto de Física de Cantabria (CSIC-UC), Avenida de los Castros, Santander 39005, Spain. E-mail: gutierjm@unican.es

Abstract

The performance of statistical downscaling (SD) techniques is critically reassessed with respect to their robust applicability in climate change studies. To this end, in addition to standard accuracy measures and distributional similarity scores, the authors estimate the robustness of the methods under warming climate conditions working with anomalous warm historical periods. This validation framework is applied to intercompare the performances of 12 different SD methods (from the analog, weather typing, and regression families) for downscaling minimum and maximum temperatures in Spain. First, a calibration of these methods is performed in terms of both geographical domains and predictor sets; the results are highly dependent on the latter, with optimum predictor sets including near-surface temperature data (in particular 2-m temperature), which appropriately discriminate cold episodes related to temperature inversion in the lower troposphere.

Although regression methods perform best in terms of correlation, analog and weather generator approaches are more appropriate for reproducing the observed distributions, especially in case of wintertime minimum temperature. However, the latter two families significantly underestimate the temperature anomalies of the warm periods considered in this work. This underestimation is found to be critical when considering the warming signal in the late twenty-first century as given by a global climate model [the ECHAM5–Max Planck Institute (MPI) model]. In this case, the different downscaling methods provide warming values with differences in the range of 1°C, in agreement with the robustness significance values. Therefore, the proposed test is a promising technique for detecting lack of robustness in statistical downscaling methods applied in climate change studies.

Corresponding author address: José M. Gutiérrez, Instituto de Física de Cantabria (CSIC-UC), Avenida de los Castros, Santander 39005, Spain. E-mail: gutierjm@unican.es
Save
  • Beersma, J., and T. Buishand, 2003: Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Res., 25, 121133.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2002: Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble. Climate Res., 21, 105125.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2005: Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations. Geophys. Res. Lett., 32, L17704, doi:10.1029/2005GL023401.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2010: Downscaling precipitation extremes: Correction of analog models through PDF predictions. Theor. Appl. Climatol., 100, 121, doi:10.1007/s00704-009-0158-1.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2011: A new global set of downscaled temperature scenarios. J. Climate, 24, 20802098.

  • Brands, S., S. Herrera, D. San-Martín, and J. M. Gutiérrez, 2011a: Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res., 48, 145161, doi:10.3354/cr00995.

    • Search Google Scholar
    • Export Citation
  • Brands, S., J. J. Taboada, A. S. Cofiño, T. Sauter, and C. Schneider, 2011b: Statistical downscaling of daily temperatures in the NW Iberian Peninsula from global climate models: Validation and future scenarios. Climate Res., 48, 163176, doi:10.3354/cr00906.

    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, S. Herrera, and A. S. Cofiño, 2012: On the use of reanalysis data for downscaling. J. Climate, 25, 25172526.

    • Search Google Scholar
    • Export Citation
  • Brandsma, T., and T. Buishand, 1998: Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling. Hydrol. Earth Syst. Sci., 2, 195209.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388.

    • Search Google Scholar
    • Export Citation
  • DeGroot, M. J., and M. J. Schervish, 2002: Probability and Statistics. 3rd ed. Addison-Wesley, 816 pp.

  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626.

    • Search Google Scholar
    • Export Citation
  • Dietterich, T., 1998: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput., 10, 18951923, doi:10.1162/089976698300017197.

    • Search Google Scholar
    • Export Citation
  • Frías, M. D., E. Zorita, J. Fernández, and C. Rodríguez-Puebla, 2006: Testing statistical downscaling methods in simulated climates. Geophys. Res. Lett., 33, L19807, doi:10.1029/2006GL027453.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, J., A. Cofiño, R. Cano, and M. Rodríguez, 2004: Clustering methods for statistical downscaling in short-range weather forecasts. Mon. Wea. Rev., 132, 21692183.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and T. O. Robbins, 2011: Climate variability and projected change in the western United States: Regional downscaling and drought statistics. Climate Dyn., 37, 835849, doi:10.1007/s00382-010-0838-7.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani, 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., C. Achberger, R. Benestad, D. Chen, and E. Førland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Res., 29, 255268.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26, 13971415, doi:10.1002/joc.1318.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., 2011: Desarrollo, validación y aplicaciones de Spain02: Una rejilla de alta resolución de observaciones interpoladas para precipitación y temperatura en españa. Ph.D. dissertation, Universidad de Cantabria, 129 pp. [Available online at www.meteo.unican.es/tesis/herrera.]

  • Herrera, S., J. Gutiérrez, R. Ancell, M. Pons, M. Frías, and J. Fernández, 2012: Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol., 32, 7485, doi:10.1002/joc.2256.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. Int. J. Climatol., 26, 13151337, doi:10.1002/joc.1314.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2002: Statistical downscaling of daily temperature in central Europe. J. Climate, 15, 17311742.

  • Huth, R., 2004: Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors. J. Climate, 17, 640652.

    • Search Google Scholar
    • Export Citation
  • Huth, R., J. Kysely, and M. Dubrovsky, 2003: Simulation of surface air temperature by GCMs, statistical downscaling and weather generator: Higher-order statistical moments. Stud. Geophys. Geod., 47, 203216, doi:10.1023/A:1022216025554.

    • Search Google Scholar
    • Export Citation
  • Huth, R., S. Kliegrova, and L. Metelka, 2008: Non-linearity in statistical downscaling: Does it bring an improvement for daily temperature in Europe? Int. J. Climatol., 28, 465477, doi:10.1002/joc.1545.

    • Search Google Scholar
    • Export Citation
  • Huth, R., C. Beck, and O. E. Tveito, 2010: Classifications of atmospheric circulation patterns—Theory and applications: Preface. Phys. Chem. Earth, 35 (9–12), 307308, doi:10.1016/j.pce.2010.06.005.

    • Search Google Scholar
    • Export Citation
  • Imbert, A., and R. Benestad, 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82, 245255, doi:10.1007/s00704-005-0133-4.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646.

  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Markatou, M., H . Tian, S. Biswas, and G . Hripcsak, 2005: Analysis of variance of cross-validation estimators of the generalization error. J. Mach. Learn. Res., 6, 11271168.

    • Search Google Scholar
    • Export Citation
  • Matulla, C., X. Zhang, X. L. Wang, J. Wang, E. Zorita, S. Wagner, and H. von Storch, 2008: Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Climate Dyn., 30, 133144, doi:10.1007/s00382-007-0277-2.

    • Search Google Scholar
    • Export Citation
  • Murphy, A., 1988: Skill scores based on the mean square error and their relationship to the correlation coefficient. Mon. Wea. Rev., 116, 24172424.

    • Search Google Scholar
    • Export Citation
  • Palutikof, J., J. Winkler, C. Goodess, and J. Andresen, 1997: The simulation of daily temperature time series from GCM output. Part I: Comparison of model data with observations. J. Climate, 10, 24972513.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T., J. Boé, A. Hall, and E. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, doi:10.1007/s00382-010-0756-8.

    • Search Google Scholar
    • Export Citation
  • Pons, N. R., D. San-Martín, S. Herrera, and J. M. Gutiérrez, 2010: Snow trends in northern Spain: Analysis and simulation with statistical downscaling methods. Int. J. Climatol., 30, 17951806, doi:10.1002/joc.2016.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R., 1988: Principal Component Analysis in Meteorology and Oceanography. 1st ed. Elsevier, 425 pp.

  • Raisanen, J., 2007: How reliable are climate models? Tellus, 59A, 229, doi:10.1111/j.1600-0870.2006.00211.x.

  • Roeckner, E., 2008: ENSEMBLES ECHAM5-MPI-OM SRESA1B run3, daily values: CERA-DB_ENSEMBLES_MPEH5_SRA1B_3_D. World Data Center for Climate. [Available online at http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ENSEMBLES_MPEH5_SRA1B_3_D.]

  • Schmith, T., 2008: Stationarity of regression relationships: Application to empirical downscaling. J. Climate, 21, 45294537.

  • Teutschbein, C., F. Wetterhall, and J. Seibert, 2011: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dyn., 37, 20872105, doi:10.1002/joc.2256.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and B. McAvaney, 2001: An analogue-based method to downscale surface air temperature: Application for Australia. Climate Dyn., 17, 947963.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and D. A. Jones, 2008: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change, 86, 165187, doi:10.1007/s10584-007-9279-7.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., A. Dufour, and B. McAvaney, 2003: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dyn., 20, 807823, doi:10.1007/s00382-002-0298-9.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vrac, M., M. L. Stein, K. Hayhoe, and X.-Z. Liang, 2007: A general method for validating statistical downscaling methods under future climate change. Geophys. Res. Lett., 34, L18701, doi:10.1029/2007GL030295.

    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., S. Halldin, and C.-Y. Xu, 2005: Statistical precipitation downscaling in central Sweden with the analogue method. J. Hydrol., 306, 174190, doi:10.1016/j.jhydrol.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., S. Halldin, and C.-Y. Xu, 2007: Seasonality properties of four statistical-downscaling methods in central Sweden. Theor. Appl. Climatol., 87, 123137, doi:10.1007/s00704-005-0223-3.

    • Search Google Scholar
    • Export Citation
  • Wilby, R., H. Hassan, and K. Hanaki, 1998: Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205, 119.

    • Search Google Scholar
    • Export Citation
  • Wilby, R., S. Charles, E. Zorita, B. Timbal, P. Whetton, and L. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. 27 pp. [Available online at http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf.]

  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 648 pp.

  • Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1596 581 140
PDF Downloads 1381 337 30