Large-Scale Control on the Patagonian Climate

R. Garreaud Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by R. Garreaud in
Current site
Google Scholar
PubMed
Close
,
P. Lopez Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by P. Lopez in
Current site
Google Scholar
PubMed
Close
,
M. Minvielle Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by M. Minvielle in
Current site
Google Scholar
PubMed
Close
, and
M. Rojas Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by M. Rojas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Patagonia, located in southern South America, is a vast and remote region holding a rich variety of past environmental records but a small number of meteorological stations. Precipitation over this region is mostly produced by disturbances embedded in the westerly flow and is strongly modified by the austral Andes. Uplift on the windward side leads to hyperhumid conditions along the Pacific coast and the western slope of the Andes; in contrast, downslope subsidence dries the eastern plains leading to arid, highly evaporative conditions.

The authors investigate the dependence of Patagonia’s local climate (precipitation and near-surface air temperature) year-to-year variability on large-scale circulation anomalies using results from a 30-yr-long high-resolution numerical simulation. Variations of the low-level zonal wind account for a large fraction of the rainfall variability at synoptic and interannual time scales. Zonal wind also controls the amplitude of the air temperature annual cycle by changing the intensity of the seasonally varying temperature advection.

The main modes of year-to-year variability of the zonal flow over southern South America are also investigated. Year round there is a dipole between mid- and high latitudes. The node separating wind anomalies of opposite sign migrates through the seasons, leading to a dipole over Patagonia during austral summer and a monopole during winter. Reanalysis data also suggests that westerly flow has mostly decreased over north-central Patagonia during the last four decades, causing a drying trend to the west of the Andes, but a modest increase is exhibited over the southern tip of the continent.

Corresponding author address: Dr. René Garreaud, Departament of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: rgarreau@dgf.uchile.cl

Abstract

Patagonia, located in southern South America, is a vast and remote region holding a rich variety of past environmental records but a small number of meteorological stations. Precipitation over this region is mostly produced by disturbances embedded in the westerly flow and is strongly modified by the austral Andes. Uplift on the windward side leads to hyperhumid conditions along the Pacific coast and the western slope of the Andes; in contrast, downslope subsidence dries the eastern plains leading to arid, highly evaporative conditions.

The authors investigate the dependence of Patagonia’s local climate (precipitation and near-surface air temperature) year-to-year variability on large-scale circulation anomalies using results from a 30-yr-long high-resolution numerical simulation. Variations of the low-level zonal wind account for a large fraction of the rainfall variability at synoptic and interannual time scales. Zonal wind also controls the amplitude of the air temperature annual cycle by changing the intensity of the seasonally varying temperature advection.

The main modes of year-to-year variability of the zonal flow over southern South America are also investigated. Year round there is a dipole between mid- and high latitudes. The node separating wind anomalies of opposite sign migrates through the seasons, leading to a dipole over Patagonia during austral summer and a monopole during winter. Reanalysis data also suggests that westerly flow has mostly decreased over north-central Patagonia during the last four decades, causing a drying trend to the west of the Andes, but a modest increase is exhibited over the southern tip of the continent.

Corresponding author address: Dr. René Garreaud, Departament of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: rgarreau@dgf.uchile.cl
Save
  • Aniya, M., 2007: Glacier variations of Hielo Patagónico Norte, Chile, for 1944/45-2004/05. Bull. Glaciol. Res., 24, 5970.

  • Aravena, J. C., and B. H. Luckman, 2009: Spatio-temporal rainfall patterns in southern South America. Int. J. Climatol., 29, 21062120.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., D. B. Krieger, and C. P. Barlow, 2011: Multiday circulation and precipitation climatology during winter rain events of differing intensities in central Chile. J. Hydrometeor., 12, 10711085.

    • Search Google Scholar
    • Export Citation
  • Blisniuk, P. M., L. A. Stern, C. P. Chamberlain, B. Idleman, and P. K. Zeitler, 2005: Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth Planet. Sci. Lett., 230, 125142.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J., G. Casassa, and A. Rivera, 2002: Meteorological and climatological aspects of the Southern Patagonia Ice Cap. The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies, G. Casassa, F. V. Sepúlveda, and R. M. Sinclair, Eds., Kluwer Academic, 29–41.

  • DGA, 1987: National water balance. Direccion General de Aguas Tech. Rep., 60 pp.

  • Escobar, F., F. Vidal, and C. Garin, 1992: Water balance in the Patagonia Icefield. Glaciological Researches in Patagonia, 1990, R. Naruse, Ed., Japanese Society of Snow and Ice, 109–119.

  • Falvey, M., and R. D. Garreaud, 2007: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8, 171193.

    • Search Google Scholar
    • Export Citation
  • Fletcher, M. S., and P. I. Moreno, 2012: Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat. Int., 253, 3246.

    • Search Google Scholar
    • Export Citation
  • Fuenzalida, H., P. Aceituno, M. Falvey, R. Garreaud, M. Rojas, and R. Sanchez, 2007: Estudio de variabilidad climática en Chile para el siglo XXI (Study on climate variability for Chile during the 21st century). National Environmental Committee Tech. Rep. [Available online at http://www.dgf.uchile.cl/PRECIS.]

  • Garreaud, R. D., 2007: Precipitation and circulation covariability in the extratropics. J. Climate, 20, 47894797.

  • Garreaud, R. D., and M. Falvey, 2009: The coastal winds off western subtropical South America in future climate scenarios. Int. J. Climatol., 29, 543554, doi:10.1002/joc.1716.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275.

  • Gillett, N. P., T. Kell, and P. Jones, 2006: Regional climate impacts of the southern annular mode. Geophys. Res. Lett., 33, L23704, doi:10.1029/2006GL027721.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462.

  • Holmlund, P., and H. Fuenzalida, 1995: Anomalous glacier responses to 20th century climatic changes in the Darwin Cordillera, southern Chile. J. Glaciol., 41, 465473.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., M. Noguer, D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins, and J. F. B. Mitchell, 2004: Generating high resolution climate change scenarios using PRECIS. Met. Office Hadley Center, 40 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lamy, F., R. Kilian, H. W. Arz, J. P. Francois, J. Kaiser, M. Prange, and T. Steinke, 2010: Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci., 3, 695699, doi:10.1038/ngeo959.

    • Search Google Scholar
    • Export Citation
  • Lara, A., R. Villalba, A. Wolodarsky-Franke, J. C. Aravena, B. H. Luckman, and E. Cuq, 2005: Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35°40′–55°S) in the Chilean Andes. J. Biogeogr., 32, 879893.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., K. Najib, J. Carrasco, and G. Casassa, 2008: Analysis of meteorological data from NCEP/NCAR reanalysis, radiosonde data and surface stations, and its relation with glacier behaviour in Patagonia during the last 50 years. Proc. Fourth EGU Alexander von Humboldt Int. Conf., Santiago, Chile, EGU, 73.

  • Lopez, P., P. Chevallier, V. Favier, B. Pouyaud, F. Ordenes, and J. Oerlemans, 2010: A regional view of fluctuations in glacier length in southern South America. Global Planet. Change, 71, 85108.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., R. Jones, L. M. Alves, and M. Valverde, 2009: Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol., 29, 22412255.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Matthewman, J., and G. Magnusdottir, 2012: Clarifying ambiguity in intraseasonal Southern Hemisphere climate modes during austral winter. J. Geophys. Res., 117, D03105, doi:10.1029/2011JD016707.

    • Search Google Scholar
    • Export Citation
  • Miller, A., 1976: The climate of Chile. Climates of Central and South America, W. Schwerdtgefer, Ed., Vol. 12, World Survey of Climatology, Elsevier, 113–145.

  • Möller, M., C. Schneider, and R. Kilian, 2007: Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol., 46, 136144.

    • Search Google Scholar
    • Export Citation
  • Moreno, P. I., 2004: Millennial-scale climate variability in northwest Patagonia over the last 15 000 yr. J. Quat. Sci., 19, 3547.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Paruelo, J. M., A. Beltran, E. Jobbagy, O. E. Sala, and R. A. Golluscio, 1998: The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Aust., 8, 85101.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Climatology Network Temperature Database. Bull. Amer. Meteor. Soc., 78, 28372849.

    • Search Google Scholar
    • Export Citation
  • Prohaska, F., 1976: The climate of Argentina, Paraguay, and Uruguay. Climates of Central and South America, W. Schwerdtgefer, Ed., Vol. 12, World Survey of Climatology, Elsevier, 57–69.

  • Quintana, J., and P. Aceituno, 2012: Changes in the rainfall regime along the extratropical west coast of South America (Chile). Atmósfera, 25, 122.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, L., H. Conway, and C. Raymond, 2007: Influence of upper air conditions on the Patagonia icefields. Global Planet. Change, 59, 203216.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., A. Rivera, and G. Casassa, 2003: Contribution of the Patagonia icefields of South America to sea level rise. Science, 302, 434437.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Rojas, M., and Coauthors, 2009: The last glacial maximum in the Southern Hemisphere in PMIP2 simulations. Climate Dyn., 32, 525548, doi:10.1007/s00382-008-0421-7.

    • Search Google Scholar
    • Export Citation
  • Rosenblüth, B., H. Fuenzalida, and P. Aceituno, 1997: Recent temperature variations in southern South America. Int. J. Climatol., 17, 6785.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schneider, C., and D. Gies, 2004: Effects of El Niño–Southern Oscillation on southernmost South America precipitation at 53°S revealed from NCEP–NCAR reanalyses and weather station data. Int. J. Climatol., 24, 10571076.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., F. A. Norte, P. Satyamurty, and S. C. Chou, 2003: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the ETA-CPTEC regional model. Wea. Forecasting, 18, 481501.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30, 2115, doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and J. P. Evans, 2007: Orographic precipitation and water vapor fractionation over the southern Andes. J. Hydrometeor., 8, 319.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Trenberth, K. E., 1981: Interannual variability of the Southern Hemisphere 500-mb flow: Regional characteristics. Mon. Wea. Rev., 109, 127136.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Villalba, R., M. Grosjeanb, and T. Kiefer, 2009: Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): State of the art and perspectives. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 175179.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2121 953 243
PDF Downloads 1668 639 55