Evaluation of Near-Surface Parameters in the Two Versions of the Atmospheric Model in CESM1 using Flux Station Observations

Jenny Lindvall Department of Meteorology, and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Jenny Lindvall in
Current site
Google Scholar
PubMed
Close
,
Gunilla Svensson Department of Meteorology, and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Gunilla Svensson in
Current site
Google Scholar
PubMed
Close
, and
Cecile Hannay National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Cecile Hannay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the performance of the Community Atmosphere Model (CAM) versions 4 and 5 in simulating near-surface parameters. CAM is the atmospheric component of the Community Earth System Model (CESM). Most of the parameterizations in the two versions are substantially different, and that is also true for the boundary layer scheme: CAM4 employs a nonlocal K-profile scheme, whereas CAM5 uses a turbulent kinetic energy (TKE) scheme. The evaluation focuses on the diurnal cycle and global observational and reanalysis datasets are used together with multiyear observations from 35 flux tower sites, providing high-frequency measurements in a range of different climate zones. It is found that both model versions capture the timing of the diurnal cycle but considerably overestimate the diurnal amplitude of net radiation, temperature, wind, and turbulent heat fluxes. The seasonal temperature range at mid- and high latitudes is also overestimated with too warm summer temperatures and too cold winter temperatures. The diagnosed boundary layer is deeper in CAM5 over ocean in regions with low-level marine clouds as a result of the turbulence generated by cloud-top cooling. Elsewhere, the boundary layer is in general shallower in CAM5. The two model versions differ substantially in their representation of near-surface wind speeds over land. The low-level wind speed in CAM5 is about half as strong as in CAM4, and the difference is even larger in areas where the subgrid-scale terrain is significant. The reason is the turbulent mountain stress parameterization, only applied in CAM5, which acts to increase the surface stress and thereby reduce the wind speed.

Corresponding author address: Jenny Lindvall, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: lindvall@misu.su.se

This article is included in the CESM1 Special Collection.

Abstract

This paper describes the performance of the Community Atmosphere Model (CAM) versions 4 and 5 in simulating near-surface parameters. CAM is the atmospheric component of the Community Earth System Model (CESM). Most of the parameterizations in the two versions are substantially different, and that is also true for the boundary layer scheme: CAM4 employs a nonlocal K-profile scheme, whereas CAM5 uses a turbulent kinetic energy (TKE) scheme. The evaluation focuses on the diurnal cycle and global observational and reanalysis datasets are used together with multiyear observations from 35 flux tower sites, providing high-frequency measurements in a range of different climate zones. It is found that both model versions capture the timing of the diurnal cycle but considerably overestimate the diurnal amplitude of net radiation, temperature, wind, and turbulent heat fluxes. The seasonal temperature range at mid- and high latitudes is also overestimated with too warm summer temperatures and too cold winter temperatures. The diagnosed boundary layer is deeper in CAM5 over ocean in regions with low-level marine clouds as a result of the turbulence generated by cloud-top cooling. Elsewhere, the boundary layer is in general shallower in CAM5. The two model versions differ substantially in their representation of near-surface wind speeds over land. The low-level wind speed in CAM5 is about half as strong as in CAM4, and the difference is even larger in areas where the subgrid-scale terrain is significant. The reason is the turbulent mountain stress parameterization, only applied in CAM5, which acts to increase the surface stress and thereby reduce the wind speed.

Corresponding author address: Jenny Lindvall, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: lindvall@misu.su.se

This article is included in the CESM1 Special Collection.

Save
  • Aubinet, M., and Coauthors, 1999: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113–175.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat, 2001: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteor., 108, 293–315, doi:10.1016/S0168-1923(01)00244-1.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., B. B. Hicks, and T. P. Meyers, 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331–1340.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 1327–1347, doi:10.1256/qj.03.73.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and Coauthors, 2006: Area-averaged surface fluxes over the Litfass region based on eddy-covariance measurements. Bound.-Layer Meteor., 121, 33–65, doi:10.1007/s10546-006-9052-x.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 1991: An intercomparison of the climates simulated by 14 atmospheric general circulation models. WCRP Rep. 58, WMO/TD-425, 165 pp.

  • Bolstad, P. V., K. J. Davis, J. Martin, B. D. Cook, and W. Wang, 2004: Component and whole-system respiration fluxes in northern deciduous forests. Tree Physiol., 24, 493–504.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833–852.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273–303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930–951.

    • Search Google Scholar
    • Export Citation
  • Dunn, A. L., C. C. Barford, S. C. Wofsy, M. L. Goulden, and B. C. Daube, 2007: A long-term record of carbon exchange in a boreal black spruce forest: Means, responses to interannual variability, and decadal trends. Global Change Biol., 13, 577–590, doi:10.1111/j.1365-2486.2006.01221.x.

    • Search Google Scholar
    • Export Citation
  • Eamus, D., L. B. Hutley, and A. P. O’Grady, 2001: Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiol., 21, 977–988.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn, 2007: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern Great Plains. Earth Interact., 11. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Flanagan, L. B., L. A. Wever, and P. J. Carlson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biol., 8, 599–615, doi:10.1046/j.1365-2486.2002.00491.x.

    • Search Google Scholar
    • Export Citation
  • Gamo, M., and S. Panuthai, 2005: Carbon flux observation in the tropical seasonal evergreen forest in Sakaerat, Thailand. AsiaFlux Newsletter, No. 14, Center for Global Environmental Studies, Tsukuba, Japan, 4–6.

  • Garratt, J. R., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—A review. J. Climate, 6, 419–448.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., L. D. Rotstayn, and P. B. Krummel, 2002: The atmospheric boundary layer in the CSIRO global climate model: Simulations versus observations. Climate Dyn., 19, 397–415, doi:10.1007/s00382-002-0233-0.

    • Search Google Scholar
    • Export Citation
  • Gilmanov, T. G., L. L. Tieszen, B. K. Wylie, L. B. Flanagan, A. B. Frank, M. R. Haferkamp, T. P. Meyers, and J. A. Morgan, 2005: Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the northern Great Plains: Potential for quantitative spatial extrapolation. Global Ecol. Biogeogr., 14, 271–292, doi:10.1111/j.1466-822x.2005.00151.x.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., S. D. Miller, H. R. da Rocha, M. C. Menton, H. C. de Freitas, A. M. e Silva Figueira, and C. A. D. de Sousa, 2004: Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl., 14, 42–54, doi:10.1890/02-6008.

    • Search Google Scholar
    • Export Citation
  • Granier, A., N. Bréda, B. Longdoz, P. Gross, and J. Ngao, 2008: Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann. For. Sci., 64, 704, doi:10.1051/forest:2008052.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357–377.

    • Search Google Scholar
    • Export Citation
  • Grünwald, T., and C. Bernhofer, 2007: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus, 59B, 387–396, doi:10.1111/j.1600-0889.2007.00259.x.

    • Search Google Scholar
    • Export Citation
  • Harazono, Y., M. Mano, A. Miyata, R. C. Zulueta, and W. C. Oechel, 2003: Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus, 55B, 215–231, doi:10.1034/j.1600-0889.2003.00012.x.

    • Search Google Scholar
    • Export Citation
  • Hirano, T., H. Segah, T. Harada, S. Limin, T. June, R. Hirata, and M. Osaki, 2007: Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biol., 13, 412–425, doi:10.1111/j.1365-2486.2006.01301.x.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., C. J. Bernacchi, and T. P. Meyers, 2005: Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric. For. Meteor., 130, 59–69, doi:10.1016/j.agrformet.2005.01.005.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, B., 2006: GEWEX Atmospheric Boundary-layer Study (GABLS) on stable boundary layers. Bound.-Layer Meteor., 118, 243–246, doi:10.1007/s10546-005-9008-6.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 5145–5153.

    • Search Google Scholar
    • Export Citation
  • Hutyra, L. R., and Coauthors, 2007: Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J. Geophys. Res., 112, G03008, doi:10.1029/2006JG000365.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    • Search Google Scholar
    • Export Citation
  • Kato, T., Y. Tang, S. Gu, M. Hirota, M. Du, Y. Li, and X. Zhao, 2006: Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biol., 12, 1285–1298, doi:10.1111/j.1365-2486.2006.01153.x.

    • Search Google Scholar
    • Export Citation
  • Kwon, H.-J., W. C. Oechel, R. C. Zulueta, and S. J. Hastings, 2006: Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems. J. Geophys. Res., 111, G03014, doi:10.1029/2005JG000036.

    • Search Google Scholar
    • Export Citation
  • Laurila, T., H. Soegaard, C. R. Lloyd, M. Aurela, J.-P. Tuovinen, and C. Nordstroem, 2001: Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theor. Appl. Climatol., 70, 183–201, doi:10.1007/s007040170014.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., H. A. Cleugh, S. J. Zegelin, and D. Hughes, 2005: Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: Measurements and comparison with MODIS remote sensing estimates. Agric. For. Meteor., 129, 151–173, doi:10.1016/j.agrformet.2004.12.004.

    • Search Google Scholar
    • Export Citation
  • Li, S.-G., J. Asanuma, A. Kotani, W. Eugster, G. Davaa, D. Oyunbaatar, and M. Sugita, 2005a: Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. J. Geophys. Res., 110, D09303, doi:10.1029/2004JD005453.

    • Search Google Scholar
    • Export Citation
  • Li, S.-G., and Coauthors, 2005b: Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biol., 11, 1941–1955, doi:10.1111/j.1365-2486.2005.01047.x.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 4159–4179.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 3200–3217.

    • Search Google Scholar
    • Export Citation
  • Merbold, L., and Coauthors, 2009: Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences, 6, 1027–1041, doi:10.5194/bg-6-1027-2009.

    • Search Google Scholar
    • Export Citation
  • Milyukova, I. M., O. Kolle, A. V. Varlagin, N. N. Vygodskaya, E.-D. Schulze, and J. Lloyd, 2002: Carbon balance of a southern taiga spruce stand in European Russia. Tellus, 54B, 429–442, doi:10.1034/j.1600-0889.2002.01387.x.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010a: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note TN-485, 194 pp.

  • Neale, R. B., and Coauthors, 2010b: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note TN-486, 268 pp.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note TN-478, 257 pp.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369–432.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 1992: Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models. J. Geophys. Res., 97, 3711–3724.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136–156.

    • Search Google Scholar
    • Export Citation
  • Saleska, S. R., and Coauthors, 2003: Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science, 302, 1554–1557, doi:10.1126/science.1091165.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., S. B. Grimmon, F. Cropley, B. Offerle, and H.-B. Su, 2000: Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. For. Meteor., 103, 357–374, doi:10.1016/S0168-1923(00)00140-4.

    • Search Google Scholar
    • Export Citation
  • Scott, R. L., G. D. Jenerette, D. L. Potts, and T. E. Huxman, 2009: Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res., 114, G04004, doi:10.1029/2008JG000900.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Suni, T., and Coauthors, 2003: Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001. Boreal Environ. Res., 8, 287–301.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132, 261–277, doi:10.1007/s10546-009-9395-1.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and J. Lindvall, 2012: Diurnal cycles in the NCAR climate model. Proc. Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF, 103–109.

  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177–206, doi:10.1007/s10546-011-9611-7.

    • Search Google Scholar
    • Export Citation
  • Tanja, S., and Coauthors, 2003: Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol., 9, 1410–1426, doi:10.1046/j.1365-2486.2003.00597.x.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 7183–7192.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148.

    • Search Google Scholar
    • Export Citation
  • Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 39–69, doi:10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Urbanski, S., and Coauthors, 2007: Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res., 112, G02020, doi:10.1029/2006JG000293.

    • Search Google Scholar
    • Export Citation
  • Veenendaal, E. M., O. Kolle, and J. Lloyd, 2004: Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa. Global Change Biol., 10, 318–328, doi:10.1111/j.1365-2486.2003.00699.x.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245–269, doi:10.1007/BF02430331.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2012: Dependence of APE simulations on vertical resolution with the Community Atmospheric Model, version 3. J. Meteor. Soc. Japan, in press.

  • Willmott, C. J., and K. Matsuura, 2001: Terrestrial air temperature and precipitation: Monthly and annual climatologies (version 3.02). [Available online at http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_clim2.html.]

  • Wilson, K. B., P. J. Hanson, and D. D. Baldocchi, 2000: Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agric. For. Meteor., 102 (2–3), 83–103, doi:10.1016/S0168-1923(00)00124-6.

    • Search Google Scholar
    • Export Citation
  • Wilson, T. B., and T. P. Meyers, 2007: Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agric. For. Meteor., 144 (3–4), 160–179, doi:10.1016/j.agrformet.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 580 296 109
PDF Downloads 240 87 8