Changing Frequency of Heavy Rainfall over the Central United States

Gabriele Villarini Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Willis Research Network, London, United Kingdom

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
, and
Gabriel A. Vecchi Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Records of daily rainfall accumulations from 447 rain gauge stations over the central United States (Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi) are used to assess past changes in the frequency of heavy rainfall. Each station has a record of at least 50 yr, and the data cover most of the twentieth century and the first decade of the twenty-first century. Analyses are performed using a peaks-over-threshold approach, and, for each station, the 95th percentile is used as the threshold. Because of the count nature of the data and to account for both abrupt and slowly varying changes in the heavy rainfall distribution, a segmented regression is used to detect changepoints at unknown points in time. The presence of trends is assessed by means of a Poisson regression model to examine whether the rate of occurrence parameter is a linear function of time (by means of a logarithmic link function). The results point to increasing trends in heavy rainfall over the northern part of the study domain. Examination of the surface temperature record suggests that these increasing trends occur over the area with the largest increasing trends in temperature and, consequently, with an increase in atmospheric water vapor.

Current affiliation: IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, Iowa.

Corresponding author address: Gabriele Villarini, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: gabriele-villarini@uiowa.edu

Abstract

Records of daily rainfall accumulations from 447 rain gauge stations over the central United States (Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi) are used to assess past changes in the frequency of heavy rainfall. Each station has a record of at least 50 yr, and the data cover most of the twentieth century and the first decade of the twenty-first century. Analyses are performed using a peaks-over-threshold approach, and, for each station, the 95th percentile is used as the threshold. Because of the count nature of the data and to account for both abrupt and slowly varying changes in the heavy rainfall distribution, a segmented regression is used to detect changepoints at unknown points in time. The presence of trends is assessed by means of a Poisson regression model to examine whether the rate of occurrence parameter is a linear function of time (by means of a logarithmic link function). The results point to increasing trends in heavy rainfall over the northern part of the study domain. Examination of the surface temperature record suggests that these increasing trends occur over the area with the largest increasing trends in temperature and, consequently, with an increase in atmospheric water vapor.

Current affiliation: IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, Iowa.

Corresponding author address: Gabriele Villarini, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: gabriele-villarini@uiowa.edu
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723.

  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484.

  • Allen, M., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Alley, R. B., and Coauthors, 2003: Abrupt climate change. Science, 299, 20052010.

  • Beaulieu, C., J. Chen, and J. L. Sarmiento, 2012: Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. Roy. Soc. London, A370, 12281249.

    • Search Google Scholar
    • Export Citation
  • Cameron, A. C., and P. K. Trivedi, 1998: Regression Analysis of Count Data. Cambridge University Press, 436 pp.

  • Changnon, S. A., and K. E. Kunkel, 2006: Changes in instruments and sites affecting historical weather records: A case study. J. Atmos. Oceanic Technol., 23, 825828.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc., 74, 829836.

  • Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., B52, 393442.

  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. Deniz Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Dobson, A. J., 2001: An Introduction to Generalized Linear Models. 2nd ed. CRC Press, 240 pp.

  • Easterling, D. R., and T. C. Peterson, 1995: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15, 369377.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2012: Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J. Geophys. Res., 117, D05123, doi:10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 2001: Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region. J. Climate, 14, 15681584.

    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., C. D. Koven, C. L. Heald, and I. Y. Fung, 2009: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl. Acad. Sci. USA, 106, 88358840.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82, 219246.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2012: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amounts, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279292.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X. Z. Liang, J. Zhu, and Y. Lin, 2006: Can GCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153.

    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Model. 2nd ed. Chapman and Hall/CRC Press, 532 pp.

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M. R., 2003: Estimating regression models with unknown break-points. Stat. Med., 22, 30553071.

  • Muggeo, V. M. R., 2008: Segmented: An R package to fit regression models with broken-line relationships. R News, No. 1, R Foundation for Statistical Computing, 20–25. [Available online at http://cran.r-project.org/doc/Rnews/Rnews_2008-1.pdf.]

  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, 2009: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 409 pp.

  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2005: A global merged land–air–sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 20212036.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvement to NOAA’s historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and A. A. Tsonis, 2009: Has climate recently shifted? Geophys. Res. Lett., 36, L06711, doi:10.1029/2008GL037022.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski, 2009: On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res., 45, W08417, doi:10.1029/2008WR007645.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, M. L. Baeck, R. Vitolo, D. B. Stephenson, and W. Krajewski, 2011: On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol., 400, 103120.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, F. Serinaldi, A. A. Ntelekos, and U. Schwarz, 2012: Analyses of extreme flooding in Austria over the period 1951–2006. Int. J. Climatol., 32, 11781192, doi:10.1002/joc.2331.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189.

  • Zhang, X., F. W. Zwiers, and G. Li, 2004: Monte Carlo experiments on the detection of trends in extreme values. J. Climate, 17, 19451952.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1664 560 48
PDF Downloads 819 286 14