Influence of Ocean and Atmosphere Components on Simulated Climate Sensitivities

Michael Winton NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
,
Alistair Adcroft NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Alistair Adcroft in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Robert W. Hallberg NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Robert W. Hallberg in
Current site
Google Scholar
PubMed
Close
,
Larry W. Horowitz NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Larry W. Horowitz in
Current site
Google Scholar
PubMed
Close
, and
Ronald J. Stouffer NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ronald J. Stouffer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.

Corresponding author address: Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: michael.winton@noaa.gov

Abstract

The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.

Corresponding author address: Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: michael.winton@noaa.gov
Save
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S.-A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168.

    • Search Google Scholar
    • Export Citation
  • Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels, 2007: Scenarios of greenhouse gas emissions and atmospheric concentrations. U.S. Climate Change Science Program and the Subcommittee on Global Change Research Synthesis and Assessment Product 2.1 Subrep. 2.1A, 154 pp.

  • Collins, M., C. M. Brierley, M. MacVean, B. B. B. Booth, and G. R. Harris, 2007: The sensitivity of the rate of transient climate change to ocean physics perturbations. J. Climate, 20, 23152320.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and K. W. Dixon, 2006: Have anthropogenic aerosols delayed a greenhouse gas–induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett., 33, L02606, doi:10.1029/2005GL024980.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., T. Schneider, D. S. Battisti, and C. M. Bitz, 2011: Consistent changes in the sea ice seasonal cycle in response to global warming. J. Climate, 24, 53255335.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2009: Sea ice index. National Snow and Ice Data Center, digital media. [Available online at http://nsidc.org/data/seaice_index/.]

  • Gleckler, P., K. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Good, P., J. M. Gregory, and J. A. Lowe, 2011: A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys. Res. Lett., 38, L01703, doi:10.1029/2010GL045208.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24, 19431946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere–ocean models. Climate Dyn., 9, 5361.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. L. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427.

    • Search Google Scholar
    • Export Citation
  • IIASA, cited 2011: RCP Database, version 2.0.5. [Available online at http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=welcome.]

  • Ilicak, M., A. Adcroft, S. M. Griffies, and R. W. Hallberg, 2011: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 37–58, doi:10.1016/j.ocemod.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38, 10331053.

    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The gravity current entrainment climate process team. Bull. Amer. Meteor. Soc., 90, 657670.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., R. Burgett, and T. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Megann, A. P., A. L. New, A. T. Blaker, and B. Sinha, 2010: The sensitivity of a coupled climate model to its ocean component. J. Climate, 23, 51265150.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Rugenstein, M. A. A., M. Winton, R. J. Stouffer, S. M. Griffies, R. W. Hallberg, 2013: Northern high-latitude heat budget decomposition and transient warming. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stouffer, R. J., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19, 723740.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2006: Multi-century simulations with the coupled GISS-HYCOM climate model: Control experiments. Climate Dyn., 26, 407428, doi:10.1007/s00382-005-0091-7.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21, 50765090.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934.

  • Winton, M., R. W. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174.

    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., J. R. N. Lazier, and R. A. Clarke, 2003: Temperature and salinity in the central Labrador Sea. Hydrobiological Variability in the ICES Area, 1990–1999, ICES Marine Symposia Series, Vol. 219, International Council for the Exploration of the Sea, 32–39.

  • Zhang, X. D., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 17301747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1791 553 47
PDF Downloads 169 38 0