Spatial and Temporal Characterization of Sea Surface Temperature Response to Tropical Cyclones

Wei Mei Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Wei Mei in
Current site
Google Scholar
PubMed
Close
and
Claudia Pasquero Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano–Bicocca, Milan, Italy

Search for other papers by Claudia Pasquero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial structure and temporal evolution of the sea surface temperature (SST) anomaly (SSTA) associated with the passage of tropical cyclones (TCs), as well as their sensitivity to TC characteristics (including TC intensity and translation speed) and oceanic climatological conditions (represented here by latitude), are thoroughly examined by means of composite analysis using satellite-derived SST data. The magnitude of the TC-generated SSTA is larger for more intense, slower-moving, and higher-latitude TCs, and it occurs earlier in time for faster-moving and higher-latitude storms. The location of maximum SSTA is farther off the TC track for faster-moving storms, and it moves toward the track with time after the TC passage. The spatial extension of the cold wake is greater for more intense and for slower-moving storms, but its shape is quite independent of TC characteristics. Consistent with previous studies, the calculations show that the mean SSTA over a TC-centered box nearly linearly correlates with the wind speed for TCs below category 3 intensity while for stronger TCs the SSTA levels off, both for tropical and subtropical regions. While the linear behavior is expected on the basis of the more vigorous mixing induced by stronger winds and is derived from a simple mixed-layer model, the level-off for intense TCs is discussed in terms of the dependence of the maximum amplitude of the area-mean SSTA on TC translation speed and depth of the prestorm mixed layer. Finally, the decay time scale of the TC-induced SSTA is shown to be dominated by environmental conditions and has no clear dependence on its initial magnitude and on TC characteristics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-12-00125.s1.

Corresponding author address: Wei Mei, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0230, La Jolla, CA 92093-0230. E-mail: wmei@ucsd.edu

Abstract

The spatial structure and temporal evolution of the sea surface temperature (SST) anomaly (SSTA) associated with the passage of tropical cyclones (TCs), as well as their sensitivity to TC characteristics (including TC intensity and translation speed) and oceanic climatological conditions (represented here by latitude), are thoroughly examined by means of composite analysis using satellite-derived SST data. The magnitude of the TC-generated SSTA is larger for more intense, slower-moving, and higher-latitude TCs, and it occurs earlier in time for faster-moving and higher-latitude storms. The location of maximum SSTA is farther off the TC track for faster-moving storms, and it moves toward the track with time after the TC passage. The spatial extension of the cold wake is greater for more intense and for slower-moving storms, but its shape is quite independent of TC characteristics. Consistent with previous studies, the calculations show that the mean SSTA over a TC-centered box nearly linearly correlates with the wind speed for TCs below category 3 intensity while for stronger TCs the SSTA levels off, both for tropical and subtropical regions. While the linear behavior is expected on the basis of the more vigorous mixing induced by stronger winds and is derived from a simple mixed-layer model, the level-off for intense TCs is discussed in terms of the dependence of the maximum amplitude of the area-mean SSTA on TC translation speed and depth of the prestorm mixed layer. Finally, the decay time scale of the TC-induced SSTA is shown to be dominated by environmental conditions and has no clear dependence on its initial magnitude and on TC characteristics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-12-00125.s1.

Corresponding author address: Wei Mei, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0230, La Jolla, CA 92093-0230. E-mail: wmei@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 47.91 KB)
Save
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Black, W. J., and T. D. Dickey, 2008: Observations and analysis of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res., 113, C08009, doi:10.1029/2007JC004358.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1971: The effects on a tropical cyclone of cooler surface waters due to upwelling and mixing produced by a prior tropical cyclone. J. Appl. Meteor., 10, 865874.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. A., 1983: The wake of Hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117129.

  • Carrigan, A. D., and M. L. Puotinen, 2011: Assessing the potential for tropical cyclone induced sea surface cooling to reduce thermal stress on the world’s coral reefs. Geophys. Res. Lett., 38, L23604, doi:10.1029/2011GL049722.

    • Search Google Scholar
    • Export Citation
  • Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233.

  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. NRL Reference Number NRL/MR/7540-02-16, 27 pp. [Available at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html.]

  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808.

  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579.

  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, doi:10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Dean, L., K. A. Emanuel, and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, doi:10.1029/2009GL039051.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2001: Contribution of tropical cyclone to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 77114 781.

  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070.

    • Search Google Scholar
    • Export Citation
  • Ginis, I., 2002: Tropical cyclone–ocean interactions. Atmosphere–Ocean Interactions, W. Perrie, Ed., Advances in Fluid Mechanics Series, Vol. 33, WIT Press, 83–114.

  • Halliwell, G. R., Jr., L. K. Shay, and J. K. Brewster, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2011: An inverse relationship between aggregate northern hemisphere tropical cyclone activity and subsequent winter climate. Geophys. Res. Lett., 38, L01705, doi:10.1029/2010GL045612.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., R. N. Maue, and M. C. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 39904005.

    • Search Google Scholar
    • Export Citation
  • Hazelworth, J. B., 1968: Water temperature variations resulting from hurricanes. J. Geophys. Res., 73, 51055123.

  • Huang, P., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, doi:10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, doi:10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654.

    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T., and W. Connolley, 2006: Teleconnections between the tropical Pacific and the Amundsen-Bellinghausens Sea: Role of the El Niño/Southern Oscillation. J. Geophys. Res., 111, D23101, doi:10.1029/2005JD006386.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182196.

  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic control on hurricane intensity. J. Climate, 24, 11381153.

  • Manzello, D. P., M. Brandt, T. B. Smith, D. Lirman, J. C. Hendee, and R. S. Nemeth, 2007: Hurricanes benefit bleached corals. Proc. Natl. Acad. Sci. USA, 104, 12 03512 039.

    • Search Google Scholar
    • Export Citation
  • Mao, Q., S. W. Chang, and R. L. Pfeffer, 2000: Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon. Wea. Rev., 128, 40584070.

    • Search Google Scholar
    • Export Citation
  • McAdie, C. J., C. W. Landsea, C. J. Neumann, J. E. David, E. Blake, and G. R. Hammer, 2009: Tropical Cyclones of the North Atlantic Ocean, 1851–2006. Historical Climatology Series, Vol. 6-2, NOAA, 238 pp.

  • Mei, W., and C. Pasquero, 2012: Restratification of the upper ocean after the passage of a tropical cyclone: A numerical study. J. Phys. Oceanogr., 42, 13771401.

    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765.

    • Search Google Scholar
    • Export Citation
  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn., 56, 594606.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. Knaff, J. P. Kossin, and T. H. V. Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005.

    • Search Google Scholar
    • Export Citation
  • Nelson, N. B., 1996: The wake of Hurricane Felix. Int. J. Remote Sens., 17, 28932895.

  • Park, J. J., Y.-O. Kwon, and J. F. Price, 2011: Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific. J. Geophys. Res., 116, C12025, doi:10.1029/2011JC007165.

    • Search Google Scholar
    • Export Citation
  • Pasquero, C., and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162.

  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclone. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175.

  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, doi:10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Pudov, V. D., 1993: The ocean response to the cyclones influence and its possible role in their track formation. Tropical Cyclone Disasters, J. Lighthill et al., Eds., Peking University, 367–376.

  • Sanford, T. B., J. F. Price, J. B. Girton, and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, doi:10.1029/2007GL029679.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57, 31223130.

  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B., and R. Hart, 2010: An examination of the spatial and temporal extent of the climate memory of tropical cyclones. Preprints, 22nd Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc., 112. [Available online at https://ams.confex.com/ams/pdfpapers/163674.pdf.]

  • Schenkel, B., and R. Hart, 2011: Potential precursors to and implications of tropical cyclone passage: A regional climate perspective. Preprints, 23rd Conf. on Climate Variability and Change, Seattle, WA, Amer. Meteor. Soc., 157. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Handout/Paper182841/seattle2011memory.pdf.]

  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580.

  • Sriver, R. L., and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, doi:10.1029/2010GL042836.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., M. Huber, and J. Nusbaumer, 2008: Investigating tropical cyclone-climate feedbacks using the TRMM Microwave Imager and the Quick Scatterometer. Geochem. Geophys. Geosyst., 9, Q09V11, doi:10.1029/2007GC001842.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., P. Cornillon, and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91, 50315035.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., P. Sandery, G. B. Brassington, M. Entel, C. Siegenthaler-LeDrian, J. D. Kepert, and R. Darbyshire, 2010: Constraints on drag and exchange coefficients at extreme wind speeds. J. Geophys. Res., 115, C09007, doi:10.1029/2009JC005876.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419.

    • Search Google Scholar
    • Export Citation
  • Zedler, S. E., 2009: Simulations of the ocean response to a hurricane: Nonlinear processes. J. Phys. Oceanogr., 39, 26182634.

  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analysis and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232, doi:10.1029/2001JC000969.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1633 494 44
PDF Downloads 1359 378 64