Stratospheric Ozone and Temperature Simulated from the Preindustrial Era to the Present Day

John Austin Princeton, New Jersey

Search for other papers by John Austin in
Current site
Google Scholar
PubMed
Close
,
Larry W. Horowitz NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Larry W. Horowitz in
Current site
Google Scholar
PubMed
Close
,
M. Daniel Schwarzkopf NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by M. Daniel Schwarzkopf in
Current site
Google Scholar
PubMed
Close
,
R. John Wilson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by R. John Wilson in
Current site
Google Scholar
PubMed
Close
, and
Hiram Levy II NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Hiram Levy II in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from the simulation of a coupled chemistry–climate model are presented for the period 1860 to 2005 using the observed greenhouse gas (GHG) and halocarbon concentrations. The model is coupled to a simulated ocean and uniquely includes both detailed tropospheric chemistry and detailed middle atmosphere chemistry, seamlessly from the surface to the model top layer centered at 0.02 hPa. It is found that there are only minor changes in simulated stratospheric temperature and ozone prior to the year 1960. As the halocarbon amounts increase after 1970, the model stratospheric ozone decreases approximately continuously until about 2000. The steadily increasing GHG concentrations cool the stratosphere from the beginning of the twentieth century at a rate that increases with height. During the early period the cooling leads to increased stratospheric ozone. The model results show a strong, albeit temporary, response to volcanic eruptions. While chlorofluorocarbon (CFC) concentrations remain low, the effect of eruptions is shown to increase the amount of HNO3, reducing ozone destruction by the NOx catalytic cycle. In the presence of anthropogenic chlorine, after the eruption of El Chichón and Mt. Pinatubo, chlorine radicals increased and the chlorine reservoirs decreased. The net volcanic effect on nitrogen and chlorine chemistry depends on altitude and, for these two volcanoes, leads to an ozone increase in the middle stratosphere and a decrease in the lower stratosphere. Model lower-stratospheric temperatures are also shown to increase during the last three major volcanic eruptions, by about 0.6 K in the global and annual average, consistent with observations.

Corresponding author address: Larry W. Horowitz, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542-0308. E-mail: larry.horowitz@noaa.gov

This article is included in the GFDL’s Coupled Model-3 (CM3): Dynamics, Physical Parameterizations, and Simulations special collection.

Abstract

Results from the simulation of a coupled chemistry–climate model are presented for the period 1860 to 2005 using the observed greenhouse gas (GHG) and halocarbon concentrations. The model is coupled to a simulated ocean and uniquely includes both detailed tropospheric chemistry and detailed middle atmosphere chemistry, seamlessly from the surface to the model top layer centered at 0.02 hPa. It is found that there are only minor changes in simulated stratospheric temperature and ozone prior to the year 1960. As the halocarbon amounts increase after 1970, the model stratospheric ozone decreases approximately continuously until about 2000. The steadily increasing GHG concentrations cool the stratosphere from the beginning of the twentieth century at a rate that increases with height. During the early period the cooling leads to increased stratospheric ozone. The model results show a strong, albeit temporary, response to volcanic eruptions. While chlorofluorocarbon (CFC) concentrations remain low, the effect of eruptions is shown to increase the amount of HNO3, reducing ozone destruction by the NOx catalytic cycle. In the presence of anthropogenic chlorine, after the eruption of El Chichón and Mt. Pinatubo, chlorine radicals increased and the chlorine reservoirs decreased. The net volcanic effect on nitrogen and chlorine chemistry depends on altitude and, for these two volcanoes, leads to an ozone increase in the middle stratosphere and a decrease in the lower stratosphere. Model lower-stratospheric temperatures are also shown to increase during the last three major volcanic eruptions, by about 0.6 K in the global and annual average, consistent with observations.

Corresponding author address: Larry W. Horowitz, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542-0308. E-mail: larry.horowitz@noaa.gov

This article is included in the GFDL’s Coupled Model-3 (CM3): Dynamics, Physical Parameterizations, and Simulations special collection.

Save
  • Austin, J., and F. Li, 2006: On the relationship between the strength of the Brewer–Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33, L17807, doi:10.1029/2006GL026867.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2010: Sensitivity of polar ozone to sea surface temperatures and halogen amounts. J. Geophys. Res., 115, D18303, doi:10.1029/2009JD013292.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2009: Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophys. Res. Lett., 36, L13809, doi:10.1029/2009GL038462.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2010: Chemistry climate model simulations of spring Antarctic ozone. J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105 (D21), 26 47526 491.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 3484–3519.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., G. Bodeker, R. Schofield, S. Solomon, and D. Thompson, 2007: Effects of cooling in the tropical lower stratosphere and upper troposphere. Geophys. Res. Lett., 34, L23813, doi:10.1029/2007GL031994.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. Marsh, D. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulations of secular trends in the middle atmosphere 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Granier, C., and G. Brasseur, 1992: Impact of heterogeneous chemistry on model predictions of ozone changes. J. Geophys. Res., 97 (D16), 18 01518 033.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2008: Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercomparison of upper-air data. J. Climate,21, 4587–4606.

  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99 (D1), 10591070.

  • Hofmann, D. J., and S. Solomon, 1989: Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J. Geophys. Res., 94 (D4), 50295041.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J. Geophys. Res., 111, D22211, doi:10.1029/2005JD006937.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., and Coauthors, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108, 4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Koike, M., N. B. Jones, W. A. Matthews, P. V. Johnston, R. L. McKenzie, D. Kinnison, and J. Rodriguez, 1994: Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3. Geophys. Res. Lett., 21, 597600.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21, 4057.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2010: Review of the formulation of present-generation stratospheric chemistry–climate models and associated external forcings. J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.

    • Search Google Scholar
    • Export Citation
  • Naik, V., L. W. Horowitz, A. M. Fiore, P. Ginoux, J. Mao, A. M. Aghedo, and H. Levy II, 2012: Preindustrial to present-day impact of changes in short-lived pollutant emissions on atmospheric composition and climate forcing. J. Geophys. Res., submitted.

  • Neu, J. L., and R. A. Plumb, 1999: Age of air in a “leaky pipe” model of stratospheric transport. J. Geophys. Res., 104 (D16), 19 24319 255.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311, 11381141, doi:10.1126/science.1122587.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2007: A stratospheric ozone profile data set for 1979-2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112, D06313, doi:10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., J. E. Penner, and P. W. Thorne, 2006: How well can the observed vertical temperature changes be reconciled with our understanding of the causes of these changes? Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences—A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, T. R. Karl et al., Eds., NCDC, 89–118.

  • Schwarzkopf, M. D., and V. Ramaswamy, 2008: Evolution of stratospheric temperature in the 20th century. Geophys. Res. Lett., 35, L03705, doi:10.1029/2007GL032489.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2008: Dynamics, stratospheric ozone and climate change. Atmos.–Ocean, 46, 117138, doi:10.3137/ao.460106.

  • Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, 2006: Role of tropospheric ozone increases in 20th century climate change. J. Geophys. Res., 111, D08302, doi:10.1029/2005JD006348.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., J. J. Barnett, and W. J. Randel, 2008: Temperature trends derived from stratospheric sounding unit radiances: The effect of increasing CO2 on the weighting function. Geophys. Res. Lett., 35, L02710, doi:10.1029/2007GL032218.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry–climate models. V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD-1526, 426 pp. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/index.php.]

  • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., and L. R. Poole, 1997: A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994. J. Geophys. Res., 102 (D7), 89678976.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Tie, X., and G. Brasseur, 1995: The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophys. Res. Lett., 22, 30353038.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project, WMO Rep. 52, 516 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2820 809 64
PDF Downloads 298 91 10