Model Bias Reduction and the Limits of Oceanic Decadal Predictability: Importance of the Deep Ocean

Florian Sévellec Ocean and Earth Science, National Oceanographic Centre Southampton, University of Southampton, Southampton, United Kingdom

Search for other papers by Florian Sévellec in
Current site
Google Scholar
PubMed
Close
and
Alexey V. Fedorov Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Alexey V. Fedorov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean general circulation models (GCMs), as part of comprehensive climate models, are extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. However, when forced with observed fields at the surface, ocean models develop biases in temperature and salinity. Here, the authors ask two complementary questions related to both decadal prediction and model bias: 1) Can the bias be temporarily reduced and the prediction improved by perturbing the initial conditions? 2) How fast will such initial perturbations grow? To answer these questions, the authors use a realistic ocean GCM and compute temperature and salinity perturbations that reduce the model bias most efficiently during a given time interval. The authors find that to reduce this bias, especially pronounced in the upper ocean above 1000 m, initial perturbations should be imposed in the deep ocean (specifically, in the Southern Ocean). Over 14 yr, a 0.1-K perturbation in the deep ocean can induce a temperature anomaly of several kelvins in the upper ocean, partially reducing the bias. A corollary of these results is that small initialization errors in the deep ocean can produce large errors in the upper-ocean temperature on decadal time scales, which can be interpreted as a decadal predictability barrier associated with ocean dynamics. To study the mechanisms of the perturbation growth, the authors formulate an idealized model describing temperature anomalies in the Southern Ocean. The results indicate that the strong mean meridional temperature gradient in this region enhances the sensitivity of the upper ocean to deep-ocean perturbations through nonnormal dynamics generating pronounced stationary-wave patterns.

Corresponding author address: Florian Sévellec, Ocean and Earth Sciences, University of Southampton, Waterfront campus, European Way, Southampton SO14 3ZH, United Kingdom. E-mail: florian.sevellec@noc.soton.ac.uk

Abstract

Ocean general circulation models (GCMs), as part of comprehensive climate models, are extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. However, when forced with observed fields at the surface, ocean models develop biases in temperature and salinity. Here, the authors ask two complementary questions related to both decadal prediction and model bias: 1) Can the bias be temporarily reduced and the prediction improved by perturbing the initial conditions? 2) How fast will such initial perturbations grow? To answer these questions, the authors use a realistic ocean GCM and compute temperature and salinity perturbations that reduce the model bias most efficiently during a given time interval. The authors find that to reduce this bias, especially pronounced in the upper ocean above 1000 m, initial perturbations should be imposed in the deep ocean (specifically, in the Southern Ocean). Over 14 yr, a 0.1-K perturbation in the deep ocean can induce a temperature anomaly of several kelvins in the upper ocean, partially reducing the bias. A corollary of these results is that small initialization errors in the deep ocean can produce large errors in the upper-ocean temperature on decadal time scales, which can be interpreted as a decadal predictability barrier associated with ocean dynamics. To study the mechanisms of the perturbation growth, the authors formulate an idealized model describing temperature anomalies in the Southern Ocean. The results indicate that the strong mean meridional temperature gradient in this region enhances the sensitivity of the upper ocean to deep-ocean perturbations through nonnormal dynamics generating pronounced stationary-wave patterns.

Corresponding author address: Florian Sévellec, Ocean and Earth Sciences, University of Southampton, Waterfront campus, European Way, Southampton SO14 3ZH, United Kingdom. E-mail: florian.sevellec@noc.soton.ac.uk
Save
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36, 17031718.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A.,G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1988: Buoyancy driven planetary flow. J. Mar. Res., 46, 215265.

  • Collins, M., and B. Sinha, 2003: Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett., 30, 1306, doi:10.1029/2002GL016504.

    • Search Google Scholar
    • Export Citation
  • Czeschel, L., D. P. Marshall, H. L. Johnson, 2010: Oscillatory sensitivity of Atlantic overturning to high-latitude forcing. Geophys. Res. Lett.,37, L10601, doi:10.1029/2010GL043177.

  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr., 22, 338349.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 35, 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53, 20412053.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20, 150155.

  • Gnanadesikan, A., and R. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459487.

    • Search Google Scholar
    • Export Citation
  • Grötzner, A., M. Latif, A. Timmermann, and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere circulation model. J. Climate, 12, 26072624.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus,28, 473–485.

  • Hawkins, E., and R. Sutton, 2009a: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 39603978.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009b: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P.,C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins, and R. P. Pearce, Eds., Academic Press, 127–168.

  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus,53A, 526–545.

  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423.

    • Search Google Scholar
    • Export Citation
  • Latif, M., M. Collins, H. Pohlmann, and N. Keenlyside, 2006: A review of predictability studies of Atlantic sector climate on decadal time scales. J. Climate, 19, 59715986.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1989: Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic Ocean, 1970-1974 versus 1955-1959. J. Geophys. Res., 94, 96799685.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1965: Predictability study of 28-variable atmospheric model. Tellus,17, 321–333.

  • Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12, 381388.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace Tech. Rep. 11, 91 pp.

  • Marotzke, J., P. Welander, and J. Willebrand, 1988: Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus,40A, 162–172.

  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485.

  • Moore, A. M., J. Vialard, A. T. Weaver, D. L. T. Anderson, R. Kleeman, and J. R. Johnson, 2003: The role of air–sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean–atmosphere modes. J. Climate, 16, 951968.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and Z. Zhang, 2006: Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci., 63, 15871604.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 34, 23052315.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and B. Wang, 2007: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res.,112, D10113, doi:10.1029/2005JD006981.

  • Olbers, D., D. Borowski, C. Völker, and J.-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591.

  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472.

    • Search Google Scholar
    • Export Citation
  • Qin, X., and M. Mu, 2011: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc.,138, 185–197, doi:10.1002/qj.902.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rivière, G., B. L. Hua, and P. Klein, 2001: Influence of the beta-effect on non-modal baroclinic instability. Quart. J. Roy. Meteor. Soc., 127, 13751388.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2010: Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations. J. Mar. Res., 68, 128.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013a: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., M. Ben Jelloul, and T. Huck, 2007: Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr., 37, 27892808.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, M. Ben Jelloul, N. Grima, J. Vialard, and A. Weaver, 2008: Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J. Phys. Oceanogr., 38, 27392754.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, M. Ben Jelloul, and J. Vialard, 2009: Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J. Phys. Oceanogr., 39, 852872.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stone, P. H., 2004: Climate prediction: The limits of ocean models. The State of the Planet: Frontiers and Challenges in Geophysics, Geophys. Monogr., Vol. 150, Amer. Geophys. Union, 259–267.

  • Strogatz, S. H., 1994: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering. Perseus, 498 pp.

  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32, 34273435.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588604.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131, 13601378.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2010: Observational network design for climate. Proc. OceanObs’09, Venice, Italy, ESA, WPP-306. [Available online at http://www.oceanobs09.net/proceedings/pp/4C2-Wunsch-OceanObs09.pp.41.pdf.]

  • Zanna, L., and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35, 15931605.

  • Zanna, L., and E. Tziperman, 2008: Optimal surface excitation of the thermohaline circulation. J. Phys. Oceanogr., 38, 18201830.

  • Zanna, L., P. Heimbach, A. M. Moore, and E. Tziperman, 2010: The role of ocean dynamics in the optimal growth of tropical SST anomalies. J. Phys. Oceanogr., 40, 9831003.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., P. Heimbach, A. M. Moore, and E. Tziperman, 2011: Optimal excitation of interannual Atlantic meridional overturning circulation variability. J. Climate, 24, 413427.

    • Search Google Scholar
    • Export Citation
  • Zhou, F., and M. Mu, 2011: The impact of verification area design on tropical cyclone targeted observations based on the CNOP method. Adv. Atmos. Sci., 28, 9971010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 101 13
PDF Downloads 155 72 1