Projected Future Changes in Vegetation in Western North America in the Twenty-First Century

Xiaoyan Jiang * Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Xiaoyan Jiang in
Current site
Google Scholar
PubMed
Close
,
Sara A. Rauscher * Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Sara A. Rauscher in
Current site
Google Scholar
PubMed
Close
,
Todd D. Ringler * Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Todd D. Ringler in
Current site
Google Scholar
PubMed
Close
,
David M. Lawrence National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
A. Park Williams Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by A. Park Williams in
Current site
Google Scholar
PubMed
Close
,
Craig D. Allen U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los Alamos, New Mexico

Search for other papers by Craig D. Allen in
Current site
Google Scholar
PubMed
Close
,
Allison L. Steiner ** Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Allison L. Steiner in
Current site
Google Scholar
PubMed
Close
,
D. Michael Cai Space Data System Group, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by D. Michael Cai in
Current site
Google Scholar
PubMed
Close
, and
Nate G. McDowell Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Nate G. McDowell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

Current affiliation: Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Xiaoyan Jiang, National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80307. E-mail: xjiang@ucar.edu

Abstract

Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

Current affiliation: Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Xiaoyan Jiang, National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80307. E-mail: xjiang@ucar.edu
Save
  • Adams, H. D., M. Guardiola-Claramonte, G. A. Barron-Gafford, J. C. Villegas, D. D. Breshears, C. B. Zou, P. A. Troch, and T. E. Huxman, 2009: Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA, 106, 70637066.

    • Search Google Scholar
    • Export Citation
  • Adams, H. D., A. K. Macalady, D. D. Breshears, C. D. Allen, N. L. Stephenson, S. R. Saleska, T. E. Huxman, and N. G. McDowell, 2010: Climate-induced tree mortality: Earth system consequences. Eos, Trans. Amer. Geophys. Union, 91, 153, doi:10.1029/2010EO170003.

    • Search Google Scholar
    • Export Citation
  • Adams, H. D., and Coauthors, 2011: Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145159, doi:10.1002/eco.233.

    • Search Google Scholar
    • Export Citation
  • Allen, C. D., and Coauthors, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660684.

    • Search Google Scholar
    • Export Citation
  • Allison, N. L., and Coauthors, 2009: The Copenhagen Diagnosis, 2009: Updating the World on the Latest Climate Science. The University of New South Wales Climate Change Research Centre, 60 pp.

  • Alo, C. A., and G. Wang, 2008: Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J. Geophys. Res., 113, G01004, doi:10.1029/2007JG000528.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 2006: Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interact., 10. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083.

  • Beck, P. S. A., and Coauthors, 2011: Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett., 14, 373379, doi:10.1111/j.1461-0248.2011.01598.x.

    • Search Google Scholar
    • Export Citation
  • Bentz, B. J., and Coauthors, 2010: Global climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. Bioscience, 60, 602613.

    • Search Google Scholar
    • Export Citation
  • Bergengren, J. C., S. L. Thompson, D. Pollard, and R. M. Deconto, 2001: Modeling global climate–vegetation interactions in a doubled CO2 world. Climatic Change, 50, 3175.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2006: Forcing and feedbacks by land ecosystem changes on climate change. J. Phys. IV, 139, 119142.

  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449.

  • Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a Dynamic Global Vegetation Model. J. Climate, 19, 22902301.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochem. Cycles, 16, 1021, doi:10.1029/2000GB001360.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol., 9, 15431566.

    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., M. D. Dettinger, E. P. Maurer, and M. Anderson, 2008: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Climatic Change, 89, 371394, doi:10.1007/s10584-007-9388-3.

    • Search Google Scholar
    • Export Citation
  • Breshears, D. D., and Coauthors, 2005: Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA, 102, 15 14415 148.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., M. Tyree, and Coauthors, 2009: Climate change scenarios and sea level rise estimates for the California 2008 climate change scenarios assessment. PIER Research Rep. CEC-500-2009-014, 64 pp.

  • Cayan, D., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov, 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276.

    • Search Google Scholar
    • Export Citation
  • Chambers, J., J. I. Fisher, H. Zeng, E. L. Chapman, D. B. Baker, and G. C. Hurtt, 2007: Hurricane Katrina’s carbon footprint on Gulf Coast forests. Science, 318, 1107.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., and Coauthors, 2005: Role of land surface changes in Arctic summer warming. Science, 310, 657660.

  • Churkina, G., and S. W. Running, 1998: Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206215.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., C. M. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306, 10151018.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., 2001: Description of the ‘TRIFFID’ Dynamic Global Vegetation Model. Hadley Centre Tech. Note No. 24, 16 pp.

  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112.

    • Search Google Scholar
    • Export Citation
  • Delbart, N., P. Ciais, J. Chave, N. Viovy, Y. Malhi, and T. Le Toan, 2010: Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: Results from a Dynamic Vegetation Model. Biogeosciences, 7, 30273039, doi:10.5194/bg-7-3027-2010.

    • Search Google Scholar
    • Export Citation
  • Edburg, S. L., J. A. Hicke, D. M. Lawrence, and P. E. Thornton, 2012: Simulating coupled carbon and nitrogen dynamics following bark beetle outbreaks. J. Geophys. Res., 116, G04033, doi:10.1029/2011JG001786.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, S. E., A. D. McGuire, and F. S. Chapin III, 2007: Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biol., 13, 24252438, doi:10.1111/j.1365-2486.2007.01450.x.

    • Search Google Scholar
    • Export Citation
  • Fisher, R., and Coauthors, 2010: Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol., 187, 666681.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2010: Update on CO2 emissions. Nat. Geosci., 3, 811812.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton, 2005: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA, 102, 13 52113 525.

    • Search Google Scholar
    • Export Citation
  • Gotangco Castillo, C. K., S. Levis, and P. Thornton, 2012: Evaluation of the new CNDV option of the Community Land Model: Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J. Climate, 25, 37023714.

    • Search Google Scholar
    • Export Citation
  • Harris, J. A., R. J. Hobbs, E. Higgs, and J. Aronson, 2006: Ecological restoration and global climate change. Restor. Ecol., 14, 170176.

    • Search Google Scholar
    • Export Citation
  • Hicke, J. A., and Coauthors, 2011: Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biol., 18, 734, doi:10.1111/j.1365-2486.2011.02543.x.

    • Search Google Scholar
    • Export Citation
  • Higgins, P. A. T., and J. Harte, 2006: Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience, 56, 407417.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., S. Frolking, M. G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S. W. Pacala, and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229.

    • Search Google Scholar
    • Export Citation
  • Jones, C., S. Liddicott, and J. Lowe, 2010: Role of terrestrial ecosystems in determining CO2 stabilization and recovery behaviour. Tellus, 62B, 682699, doi:10.1111/j.1600-0889.2010.00490.x.

    • Search Google Scholar
    • Export Citation
  • Joos, F., I. C. Prentice, S. Sitch, R. Meyer, G. Hooss, G. K. Plattner, S. Gerber, and K. Hasselmann, 2001: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles, 15, 891907, doi:10.1029/2000GB001375.

    • Search Google Scholar
    • Export Citation
  • Kurz, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata, and L. Safranyik, 2008a: Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987990.

    • Search Google Scholar
    • Export Citation
  • Kurz, W. A., G. Stinson, G. J. Rampley, C. C. Dymond, and E. T. Neilson, 2008b: Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. USA, 105, 15511555.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Sys., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, 25, 30713095.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836.

  • Levis, S., G. B. Bonan, M. Vertenstein, and K. Oleson, 2004: The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user’s guide. NCAR Tech. Note TN-4591IA, 50 pp.

  • Li, W. H., R. Fu, and R. E. Dickinson, 2006: Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res., 111, D02111, doi:10.1029/2005/JD006355.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, doi:10.1029/2006GL028937.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2011: Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. J. Geophys. Res., 116, G00K08, doi:10.1029/2005JD006355.

    • Search Google Scholar
    • Export Citation
  • McDowell, N. G., 2011: Mechanisms linking drought, hydraulics, carbon metabolism, and mortality. Plant Physiol., 155, 10511059.

  • McDowell, N. G., D. J. Beerling, D. D. Breshears, R. A. Fisher, K. F. Raffa, and M. Stitt, 2011: The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol., 26, 523532, doi:10.1016/j.tree.2011.06.003.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: The WCRP CMIP3 multimodel dataset. Bull. Amer. Meteor. Soc., 88, 13831394.

  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, C. Tebaldi, W. G. Strand, and J. B. White III, 2011: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683.

    • Search Google Scholar
    • Export Citation
  • Michaelian, M., E. H. Hogg, R. J. Hall, and E. Arsenault, 2011: Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Global Change Biol., 17, 20842094.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220.

  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Notaro, M., S. Vavrus, and Z. Liu, 2007: Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J. Climate, 20, 7090.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note.pdf.]

  • Pacala, S. W., and Coauthors, 2001: Consistent land and atmosphere-based US carbon sink estimates. Science, 292, 23162320.

  • Peñuelas, J., T. Rutishauser, and I. Filella, 2009: Phenology feedbacks on climate change. Science, 324, 887888.

  • Pfeifer, E. M., J. A. Hicke, and A. J. H. Meddens, 2011: Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Global Change Biol., 17, 339350.

    • Search Google Scholar
    • Export Citation
  • Potter, C. S., S. A. Klooster, R. Nemani, V. Genovese, S. Hiatt, M. Fladeland, and P. Gross, 2006: Estimating carbon budgets for U.S. ecosystems. Eos, Trans. Amer. Geophys. Union, 87, 8596, doi:10.1029/2006EO080001.

    • Search Google Scholar
    • Export Citation
  • Potter, K. N., H. A. Torbert, H. B. Johnson, and C. R. Tischler, 1999: Carbon storage after long-term grass establishment on degraded soils. Soil Sci., 164, 718725.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975.

    • Search Google Scholar
    • Export Citation
  • Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, and W. H. Romme, 2008: Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience, 58, 501517.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti, 2008: Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett., 35, L16703, doi:10.1029/2008GL034424.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., F. Kucharski, and D. B. Enfield, 2011: The role of regional SST warming variations in the drying of meso-America in future climate projections. J. Climate, 24, 20032016.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, M. Clark, and J. Pitlick, 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Running, S. W., 2008: Ecosystem disturbance, carbon, and climate. Science, 321, 652653.

  • Scurlock, J. M. O., K. Johnson, and R. J. Olson, 2002: Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol., 8, 736753.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seppälä, R., A. Buck, and P. Katila, Eds., 2009: Adaptation of Forests and People to Climate Change: A Global Assessment Report. IUFRO World Series, Vol. 22, International Union of Forest Research Organizations, 224 pp.

  • Seth, A., S. A. Rauscher, M. Rojas, A. Giannini, and S. J. Camargo, 2011: Enhanced spring convective barrier for monsoons in a warmer world. Climate Change Lett., 104, 403414, doi:10.1007/s10584-010-9973-8.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol., 14, 20152039, doi:10.1111/j.1365-2486.2008.01626.x.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephenson, N. L., 1990: Climatic control of vegetation distribution: The role of the water balance. Amer. Nat., 135, 649670.

  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier stream flow timing across western North America. J. Climate, 18, 11361155.

    • Search Google Scholar
    • Export Citation
  • Thonicke, K., S. Venesky, S. Sitch, and W. Cramer, 2001: The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Global Ecol. Biogeogr., 10, 661667.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles, 21, GB4018, doi:10.1029/2006GB002868.

    • Search Google Scholar
    • Export Citation
  • van Mantgem, P. J., and Coauthors, 2009: Widespread increase of tree mortality rates in the western United States. Science, 323, 521524.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195.

  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increases western U.S. forest wildfire activity. Science, 313, 940943.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., C. D. Allen, C. I. Millar, T. W. Swetnam, J. Michaelsen, C. J. Still, and S. W. Leavitt, 2010: Forest response to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA, 107, 21 28921 294.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., C. G. Xu, and N. G. McDowell, 2011: Who is the new sheriff in town regulating boreal forest growth? Environ. Res. Lett., 6, 041004, doi:10.1088/1748-9326/6/4/041004.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2013: Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Climate Change, 3, 292297, doi:10.1038/nclimate1693.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., X. Zeng, and M. Barlage, 2008: Growing temperate shrubs over arid and semiarid regions in the NCAR Dynamic Global Vegetation Model (CLM-DGVM). Global Biogeochem. Cycles, 22, GB3003, doi:10.1029/2007GB003014.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940943.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1334 370 19
PDF Downloads 694 187 9