Multiseason Lead Forecast of the North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE)

Gabriele Villarini IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
and
Gabriel A. Vecchi National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By considering the intensity, duration, and frequency of tropical cyclones, the power dissipation index (PDI) and accumulated cyclone energy (ACE) are concise metrics routinely used to assess tropical storm activity. This study focuses on the development of a hybrid statistical–dynamical seasonal forecasting system for the North Atlantic Ocean’s PDI and ACE over the period 1982–2011. The statistical model uses only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational record, reflecting the role of both local and nonlocal effects on the genesis and development of tropical cyclones in the North Atlantic basin. SSTs are predicted using a 10-member ensemble of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), an experimental dynamical seasonal-to-interannual prediction system. To assess prediction skill, a set of retrospective predictions is initialized for each month from November to April, over the years 1981–2011. The skill assessment indicates that it is possible to make skillful predictions of ACE and PDI starting from November of the previous year: skillful predictions of the seasonally integrated North Atlantic tropical cyclone activity for the coming season could be made even while the current one is still under way. Probabilistic predictions for the 2012 North Atlantic tropical cyclone season are presented.

Corresponding author address: Gabriele Villarini, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, IA 52242. E-mail: gabriele-villarini@uiowa.edu

Abstract

By considering the intensity, duration, and frequency of tropical cyclones, the power dissipation index (PDI) and accumulated cyclone energy (ACE) are concise metrics routinely used to assess tropical storm activity. This study focuses on the development of a hybrid statistical–dynamical seasonal forecasting system for the North Atlantic Ocean’s PDI and ACE over the period 1982–2011. The statistical model uses only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational record, reflecting the role of both local and nonlocal effects on the genesis and development of tropical cyclones in the North Atlantic basin. SSTs are predicted using a 10-member ensemble of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), an experimental dynamical seasonal-to-interannual prediction system. To assess prediction skill, a set of retrospective predictions is initialized for each month from November to April, over the years 1981–2011. The skill assessment indicates that it is possible to make skillful predictions of ACE and PDI starting from November of the previous year: skillful predictions of the seasonally integrated North Atlantic tropical cyclone activity for the coming season could be made even while the current one is still under way. Probabilistic predictions for the 2012 North Atlantic tropical cyclone season are presented.

Corresponding author address: Gabriele Villarini, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, IA 52242. E-mail: gabriele-villarini@uiowa.edu
Save
  • Alessandri, A., A. Borrelli, S. Gualdi, E. Scoccimarro, and S. Masina, 2011: Tropical cyclone count forecasting using a dynamical seasonal prediction system: Sensitivity to improved ocean initialization. J. Climate, 24, 29632982.

    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2000: Policy statement: Hurricane research and forecasting. Bull. Amer. Meteor. Soc., 6, 13411346.

  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.

  • Camargo, S. J., and A. G. Barnston, 2009: Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI. Wea. Forecasting, 24, 472491.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, P. Klotzbach, and C. W. Landsea, 2007: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

  • Chen, J. H., and S. J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2006: Prediction models for annual U.S. hurricane counts. J. Climate, 19, 29352952.

  • Elsner, J. B., X. Niu, and T. H. Jagger, 2004: Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J. Climate, 17, 26522666.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509.

  • Gray, W. M., 1984a: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984b: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 16691683.

  • Hyndman, R. J., and A. B. Koehler, 2006: Another look at measures of forecast accuracy. Int. J. Forecasting, 22, 679688.

  • Jagger, T. H., and J. B. Elsner, 2010: A consensus model for seasonal hurricane prediction. J. Climate, 23, 60906099.

  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886-1983: Contents, limitations, and uses. National Oceanic and Atmospheric Administration Tech. Memo NWS NHC 22, 24 pp.

  • Kim, H.-M., and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical–statistical model. Geophys. Res. Lett., 37, L21705, doi:10.1029/2010GL044792.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2008: Refinements to Atlantic basin seasonal hurricane prediction from 1 December. J. Geophys. Res., 113, D17109, doi:10.1029/2008JD010047.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2009: Twenty-five years of Atlantic basin seasonal hurricane forecasts. Geophys. Res. Lett., 36, L09711, doi:10.1029/2009GL037580.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Laio, F., and S. Tamea, 2007: Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol. Earth Syst. Sci., 11, 12671277.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.

  • LaRow, T. E., L. Stefanova, D. W. Shin, and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, doi:10.1029/2006GL027969.

    • Search Google Scholar
    • Export Citation
  • Li, S., and R. Lund, 2012: Multiple changepoint detection via genetic algorithms. J. Climate, 25, 674686.

  • MacAdie, C. J., C. W. Landsea, C. J. Neumann, J. E. David, E. Blake, and G. R. Hammer, 2009: Tropical cyclones of the North Atlantic Ocean, 1851–2006. National Climatic Data Center/TCP/National Hurricane Center, Historical Climatology Series 6-2, 238 pp.

  • Mason, S. J., and O. Baddour, 2007: Statistical modeling. Seasonal Climate: Forecasting and Managing Risk, A. Troccoli et al., Eds., Springer, 163–201.

  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434, 10051008.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, and A. Navarra, 2012: Tropical cyclone effects on Arctic Sea ice variability. Geophys. Res. Lett., 39, L17704, doi:10.1029/2012GL052987.

    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvement to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661071.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2013: Multi-year predictions of North Atlantic hurricane frequency: Promise and limitations. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and F. Serinaldi, 2012: Development of statistical models for at-site probabilistic seasonal rainfall forecast. Int. J. Climatol., 32, 21972212, doi:10.1002/joc.3393.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Climate, 25, 625637.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic Basin on climate indices. Mon. Wea. Rev., 138, 26812705.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, M. Zhao, and J. A. Smith, 2011: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modeling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., M. Huddleston, D. Deque, T. Palmer, T. Stockdale, M. Davey, S. Ineson, and A. Weisheimer, 2007: Dynamically based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. K. E. Schemm, A. Kumar, W. Wang, L. Long, M. Chelliah, G. D. Bell, and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500.

    • Search Google Scholar
    • Export Citation
  • Weron, R., 2006: Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. Wiley, 192 pp.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 627 pp.

  • World Meteorological Organization, 2008: Report from expert meeting to evaluate skill of tropical cyclone seasonal forecasts. World Meteorological Organization Tech. Doc. 1455, 27 pp, 2008.

  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in GFDL’s fully-coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2335 655 36
PDF Downloads 344 89 3