Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?

Yanyan Huang Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yanyan Huang in
Current site
Google Scholar
PubMed
Close
,
Huijun Wang Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
, and
Ping Zhao Chinese Academy of Meteorological Science, China Meteorological Administration, Beijing, China

Search for other papers by Ping Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO index interannual variability and the associated atmospheric circulation anomalies using the 1959–2001 hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches Météorologiques (CNRM), and the Met Office (UKMO) general circulation models from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project. The results show that these models predict the summer APO index interannual variability well and have higher skill for the North Pacific than for the Asian upper-tropospheric temperature. Meanwhile, the observed APO-related atmospheric circulation anomalies in the South Asian high, the tropical easterly wind jet over the Asian monsoon region in the upper troposphere, the subtropical anticyclone over the North Pacific, and the summer southwest monsoon over Asia in the lower troposphere are reasonably well predicted in their spatial patterns and intensities. Compared with the observations, however, these models display low skill in predicting the long-term varying trends of the upper-tropospheric temperature over the Asian–North Pacific sector or the APO index during 1959–2001.

Corresponding author address: Yanyan Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Nansen-Zhu International Research Centre, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: hyyfeng@163.com

Abstract

The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO index interannual variability and the associated atmospheric circulation anomalies using the 1959–2001 hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches Météorologiques (CNRM), and the Met Office (UKMO) general circulation models from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project. The results show that these models predict the summer APO index interannual variability well and have higher skill for the North Pacific than for the Asian upper-tropospheric temperature. Meanwhile, the observed APO-related atmospheric circulation anomalies in the South Asian high, the tropical easterly wind jet over the Asian monsoon region in the upper troposphere, the subtropical anticyclone over the North Pacific, and the summer southwest monsoon over Asia in the lower troposphere are reasonably well predicted in their spatial patterns and intensities. Compared with the observations, however, these models display low skill in predicting the long-term varying trends of the upper-tropospheric temperature over the Asian–North Pacific sector or the APO index during 1959–2001.

Corresponding author address: Yanyan Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Nansen-Zhu International Research Centre, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: hyyfeng@163.com
Save
  • Alessandri, A., A. Borrelli, A. Navarra, A. Arribas, M. Déqué, P. Rogel, and A. Weisheimer, 2011: Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: Comparison with DEMETER. Mon. Wea. Rev., 139, 581607.

    • Search Google Scholar
    • Export Citation
  • Blanford, H. F., 1884: On the externsion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc. Roy. Soc. London, 37, 123.

    • Search Google Scholar
    • Export Citation
  • Cantelaube, P., and J. M. Terres, 2005: Seasonal weather forecasts for crop yield modelling in Europe. Tellus, 57A, 476487.

  • Challinor, A. J., J. M. Slingo, T. R. Wheeler, and F. J. Doblas-Reyes, 2005: Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus, 57A, 498512.

    • Search Google Scholar
    • Export Citation
  • Chen, G., 1999: The subtropical high. The Droughts and Floods in Summer in China and Background Fields (in Chinese), Z. G. Zhao, Ed., China Meteorological Press, 45–52.

  • Chen, H. P., J. Q. Sun, and H. J. Wang, 2012: A statistical downscaling model for forecasting summer rainfall in China from DEMETER hindcast datasets. Wea. Forecasting, 27, 608628.

    • Search Google Scholar
    • Export Citation
  • Diez, E., C. Primo, J. A. García-Moya, J. M. Gutiérrez, and B. Orfila, 2005: Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus, 57A, 409423.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting–II. Calibration and combination. Tellus, 57A, 234252.

    • Search Google Scholar
    • Export Citation
  • Fan, K., and H. J. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974986.

    • Search Google Scholar
    • Export Citation
  • Fan, K., H. J. Wang, and Y. J. Choi, 2008: A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chin. Sci. Bull., 53, 602609.

    • Search Google Scholar
    • Export Citation
  • Fan, K., Y. Liu, and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 10171030.

    • Search Google Scholar
    • Export Citation
  • Fil, C., and L. Dubus, 2005: Winter climate regimes over the North Atlantic and European region in ERA-40 reanalysis and DEMETER seasonal hindcasts. Tellus, 57A, 290307.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting.–I. Basic concept. Tellus, 57A, 219233.

    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and J. Shukla, 1976: An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 24612462.

    • Search Google Scholar
    • Export Citation
  • Hoshen, M., and A. Morse, 2004: A weather-driven model of malaria transmission. Malar. J., 3, doi:10.1186/1475-2875-3-32.

  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664.

    • Search Google Scholar
    • Export Citation
  • Johansson, Å., 2007: Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20, 19571975.

  • Joseph, S., A. K. Sahai, and B. N. Goswami, 2010: Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Climate Dyn., 35, 651667.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., M. Hoerling, and B. Rajagopalan, 2005: Advancing dynamical prediction of Indian monsoon rainfall. Geophys. Res. Lett., 32, L08704, doi:10.1029/2004GL021979.

    • Search Google Scholar
    • Export Citation
  • Li, C. Y., 2000: Introduction to Climate Dynamics (in Chinese). China Meteorological Press, 32 pp.

  • Li, F., and H. J. Wang, 2012: Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS. Adv. Atmos. Sci., 29, 441454.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and K. Fan, 2012: Improve the prediction of summer precipitation in the Southeastern China by a hybrid statistical downscaling model. Meteor. Atmos. Phys., 117, 121134, doi:10.1007/s00703-012-0201-0.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and K. Fan, 2013: A new statistical downscaling model for autumn precipitation in China. Int. J. Climatol., 33, 13211336, doi:10.1002/joc.3514.

    • Search Google Scholar
    • Export Citation
  • Ma, S., X. Rodó, and F. J. Doblas-Reyes, 2012: Evaluation of the DEMETER performance for seasonal hindcasts of the Indian summer monsoon rainfall. Int. J. Climatol., 32, 17171729, doi:10.1002/joc.2389.

    • Search Google Scholar
    • Export Citation
  • Man, W., and T. Zhou, 2011: Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chin. Sci. Bull., 56, 30423052.

    • Search Google Scholar
    • Export Citation
  • Marletto, V., and Coauthors, 2005: Evaluation of downscaled DEMETER multi-model ensemble seasonal hindcasts in a northern Italy location by means of a model of wheat growth and soil water balance. Tellus, 57A, 488497.

    • Search Google Scholar
    • Export Citation
  • Nan, S. L., P. Zhao, S. Yang, and J. M. Chen, 2009: Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res., 114, D10104, doi:10.1029/2008jd011559.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1986: Long-term variations of cloud amount in the western Pacific region. J. Meteor. Soc. Japan, 64, 373390.

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872.

    • Search Google Scholar
    • Export Citation
  • Qian, Z. L., H. J. Wang, and J. Q. Sun, 2011: The hindcast of winter and spring Arctic and Antarctic oscillation with the coupled climate models. Acta Meteor. Sin., 25, 340354.

    • Search Google Scholar
    • Export Citation
  • Robock, A., M. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108, 4131, doi:10.1029/2002jd002286.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Sun, J. Q., and H. P. Chen, 2011: Predictability of western North Pacific typhoon activity and its factors using DEMETER coupled models. Chin. Sci. Bull., 56, 34743479.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., D. Koch, A. A. Lacis, and M. Sato, 2000: Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study. J. Geophys. Res., 105 (D22), 26 97126 989.

    • Search Google Scholar
    • Export Citation
  • Thomson, M. C., F. J. Doblas-Reyes, S. J. Mason, R. Hagedorn, S. J. Connor, T. Phindela, A. P. Morse, and T. N. Palmer, 2006: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature, 439, 576579.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Sci., 4, 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci., 18, 376386.

  • Wang, H. J., and K. Fan, 2009: A new scheme for improving the seasonal prediction of summer precipitation anomalies. Wea. Forecasting, 24, 548554.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 1989: Possible climate change due to SO2-derived cloud condensation nuclei. Nature, 339, 365367.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yoo, J. H., and I.-S. Kang, 2005: Theoretical examination of a multi-model composite for seasonal prediction. Geophys. Res. Lett., 32, L18707, doi:10.1029/2005GL023513.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., Y. N. Zhu, and R. H. Zhang, 2007: An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293303.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., Z. H. Cao, and J. M. Chen, 2010: A summer teleconnection pattern over the extratropical Northern Hemisphere and associated mechanisms. Climate Dyn., 35, 523534.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., S. Yang, H. J. Wang, and Q. Zhang, 2011: Interdecadal relationships between the Asian–Pacific Oscillation and summer climate anomalies over Asia, North Pacific, and North America during a recent 100 years. J. Climate, 24, 47934799.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., B. Wang, and X. Zhou, 2012: Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation. Climate Dyn., 39, 11971207, doi:10.1007/s00382-012-1348-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 58 1
PDF Downloads 168 43 0