On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic

Xiaoming Zhai School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Xiaoming Zhai in
Current site
Google Scholar
PubMed
Close
and
Carl Wunsch Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Carl Wunsch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Variations in power input to the ocean using a recent global “reanalysis” extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted as a spurious result of the changing observational system. Focusing therefore on the North Atlantic Ocean, where the database is somewhat more secure, it is found that the input power in the subpolar North Atlantic varies significantly in time, showing a strong relationship to the North Atlantic Oscillation (NAO). During positive NAO index years, power input is greater owing to enhanced synoptic activity. Furthermore, cumulative power input to the subpolar North Atlantic is found to correlate significantly with both the eddy kinetic energy there and the Atlantic multidecadal oscillation (AMO), although the physical mechanism at work remains unclear. The assumption that the changing ocean can be neglected relative to the changing atmosphere in calculating the power input is found to be a usefully accurate approximation over the two decades for which changing ocean state estimates are available. Strong dependence on synoptic weather systems of monthly-mean stress distributions implies that past and future climate simulations must account properly for changes in weather systems, not just the large-scale variations.

Corresponding author address: Xiaoming Zhai, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: xiaoming.zhai@uea.ac.uk

Abstract

Variations in power input to the ocean using a recent global “reanalysis” extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted as a spurious result of the changing observational system. Focusing therefore on the North Atlantic Ocean, where the database is somewhat more secure, it is found that the input power in the subpolar North Atlantic varies significantly in time, showing a strong relationship to the North Atlantic Oscillation (NAO). During positive NAO index years, power input is greater owing to enhanced synoptic activity. Furthermore, cumulative power input to the subpolar North Atlantic is found to correlate significantly with both the eddy kinetic energy there and the Atlantic multidecadal oscillation (AMO), although the physical mechanism at work remains unclear. The assumption that the changing ocean can be neglected relative to the changing atmosphere in calculating the power input is found to be a usefully accurate approximation over the two decades for which changing ocean state estimates are available. Strong dependence on synoptic weather systems of monthly-mean stress distributions implies that past and future climate simulations must account properly for changes in weather systems, not just the large-scale variations.

Corresponding author address: Xiaoming Zhai, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: xiaoming.zhai@uea.ac.uk
Save
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res.,109, D11111, doi:10.1029/2004JD004536.

  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2010: How much energy is transferred from the winds to the thermocline on ENSO time scales? J. Climate, 23, 15631580.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., D. Renggli, S. Wild, L. V. Alexander, G. C. Leckebusch, and U. Ulbrich, 2011: Reanalysis suggests long-term upward trends in European storminess since 1871. Geophys. Res. Lett., 38, L14703, doi:10.1029/2011GL047995.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., 1966: Sources of energy for the ocean circulation and a theory of the mixed layer. Proc. Fifth U.S. Congress of Applied Mechanics, Minneapolis, MN, ASME, 651–672.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499528.

    • Search Google Scholar
    • Export Citation
  • Hazewinkel, J., F. Paparella, and W. R. Young, 2012: Stressed horizontal convection. J. Fluid Mech., 692, 317331.

  • Huang, R. X., W. Wang, and L. Liu, 2006: Decadal variability of wind-energy input to the World Ocean. Deep-Sea Res., 53, 3141.

  • Hughes, C., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study on the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, doi:10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation and relationships to regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperatures 1856–1991. J. Geophys. Res., 103, 18 56718 589.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lauderdale, J. M., A. C. Naveira Garabato, K. I. C. Oliver, and L. N. Thomas, 2012: Climatic variations of the work done by the wind on the ocean’s general circulation. J. Geophys. Res., 117, C09017, doi:10.1029/2012JC008135.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136.

  • Maximenko, N. A., and P. P. Niiler, 2005: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, N. Saxena, Ed., PACON International, 55–59.

  • Nicolas, J. P., and D. H. Bromwich, 2011: Precipitation changes in high southern latitudes from global reanalysis: A cautionary tale. Surv. Geophys., 32, 475494.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., B. Barnier, W. K. Dewar, and J. J. O’Brien, 2004: Dynamical response of the oceanic eddy field to the North Atlantic Oscillation: A model–data comparison. J. Phys. Oceanogr., 34, 26152629.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res., 56, 295304.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and C. Wunsch, 1999: Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77108.

  • Stammer, D., C. Wunsch, and K. Ueyoshi, 2006: Temporal changes in ocean eddy transports. J. Phys. Oceanogr., 36, 543550.

  • Stern, M. E., 1975: Ocean Circulation Physics. International Geographic Series, Vol. 19, Academic Press, 246 pp.

  • Trenberth, K. E., J. W. Hurrell, and A. Solomon, 1995: Conservation of mass in three dimensions in global analysis. J. Climate, 8, 692708.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the tropics. J. Climate, 14, 14991510.

    • Search Google Scholar
    • Export Citation
  • Wang, W., A. Köhl, and D. Stammer, 2010: Estimates of global ocean volume transports during 1960 through 2001. Geophys. Res. Lett., 37, L15601, doi:10.1029/2010GL043949.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low-frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., doi:10.1007/s00382-012-1450-9, in press.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340.

  • Wunsch, C., 2005: Thermohaline loops, Stommel box models, and the Sandström theorem. Tellus, 57A, 8499.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C. and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation state estimates with land and sea ice. Ocean Circulation and Climate, 2nd ed. G. Sielder et al., Eds., Elsevier, in press.

  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95–103.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 528 350 35
PDF Downloads 173 66 2