Spatial Decomposition of Climate Feedbacks in the Community Earth System Model

A. Gettelman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by A. Gettelman in
Current site
Google Scholar
PubMed
Close
,
J. E. Kay National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by J. E. Kay in
Current site
Google Scholar
PubMed
Close
, and
J. T. Fasullo National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by J. T. Fasullo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: andrew@ucar.edu

This article is included in the CESM1 Special Collection.

Abstract

An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: andrew@ucar.edu

This article is included in the CESM1 Special Collection.

Save
  • Bitz, C., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 24152431, doi:10.1007/s00382-011-1279-7.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513516.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1979: Carbon dioxide and climate: A scientific assessment. National Academy of Science Tech. Rep., 22 pp. [Available online at http://www.nap.edu/catalog.php?record_id=12181.]

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model: CAM3. J. Climate, 19, 21222161.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2002: Geographical contributions to global climate sensitivity in a general circulation model. Global Planet. Change, 32, 211243.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873.

  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527.

  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338, 792794.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud–aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 319–338.

  • Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci., 4, 151155.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Q. Fu, 2008: Observed and simulated upper-tropospheric water vapor feedbacks. J. Climate, 21, 32823289.

  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., J. E. Kay, and K. M. Shell, 2012: The evolution of climate feedbacks in the Community Atmosphere Model. J. Climate, 25, 14531469.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871.

  • Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res., 107, 4347, doi:10.1029/2001JD001143.

    • Search Google Scholar
    • Export Citation
  • Huber, M., I. Mahlstein, M. Wild, J. Fasullo, and R. Knutti, 2011: Constraints on climate sensitivity from radiation patterns in climate models. J. Climate, 24, 10341052.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012a: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, H. C. Bitz, A. Gettelman, E. Blanchard-Wrigglesworth, A. Conley, and D. Bailey, 2012b: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450.

    • Search Google Scholar
    • Export Citation
  • Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate, 24, 60926099.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006: Constraining climate sensitivity from the seasonal cycle in surface temperature. J. Climate, 19, 42244233.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. M. Smith, and T. Wong, 2009: Towards optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2008GL036076.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.]

  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739.

    • Search Google Scholar
    • Export Citation
  • Ogura, T., S. Emori, M. J. Webb, Y. Tsushima, T. Yokohata, A. Abe-Ouchi, and M. Kimoto, 2008: Towards understanding cloud response in atmospheric GCMs: The use of tendency diagnostics. J. Meteor. Soc. Japan, 86, 6979.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. J. Fraame, D. A. Stainforth, and M. R. Allen, 2005: Constraints on climate change from a multi-thousand member ensemble of simulations. Geophys. Res. Lett., 32, L23825, doi:10.1029/2005GL024452.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. P. Batstone, R. J. P. Hoffman, K. E. Taylor, and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Rougier, J., D. M. H. Sexton, J. M. Murphy, and D. Stainforth, 2009: Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Climate, 22, 35403557.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., and K. M. Shell, 2012: Model-specific radiative kernels for calculating cloud and non-cloud climate feedbacks. J. Climate, 25, 76077624.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., K. M. Shell, and W. Ingram, 2010: Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs. Climate Dyn., 35, 12191236.

    • Search Google Scholar
    • Export Citation
  • Seethala, C., and A. Horváth, 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6, 393418.

  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmosphere Model. J. Climate, 21, 22692282.

    • Search Google Scholar
    • Export Citation
  • Slingo, A. A., 1989: A GCM parameterization for the shortwave radiative properties of clouds. J. Atmos. Sci., 46, 14191427.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Taylor, P. C., R. G. Ellingson, and M. Cai, 2011a: Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J. Climate, 24, 27372753.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., R. G. Ellingson, and M. Cai, 2011b: Seasonal variation of climate feedbacks in the NCAR CCSM3.0. J. Climate, 24, 34333444.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2012: Using a multiphysics ensemble for exploring diversity in cloud shortwave feedback in GCMs. J. Climate, 25, 54165431.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanism to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2012: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 38, 677707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., J. C. Hargreaves, J. D. Annan, T. Yokohata, and A. A. Ouchi, 2011: Dependency of feedbacks on forcing and climate state in physics parameter ensembles. J. Climate, 24, 64406455.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 608624.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 855 188 23
PDF Downloads 226 108 15